
Can We Rely on SQL?

J.H. ter Bekke
Department of Information Systems

Delft University of Technology
Zuidplantsoen 4, 2628 BZ Delft, The Netherlands

E-mail: j.h.terbekke@is.twi.tudelft.nl

Abstract

It is important for any data language that it enables many
people to derive correct information from a databases in
a simple, effective way with predictable performance. In
an analysis is shown that SQL cannot fulfill these essential
preconditions. It is caused by insufficient structural
semantics of the relational model and the related
operations in SQL. This follows from a comparison with
results obtained from application of the semantic Xplain
data language. The consequences of these shortcomings
are an extreme performance degradation and a growing
uncertainty among SQL users.

1. Introduction

The facility to express queries in a non-procedural
way is an essential property of SQL. It gives the relational
model its unique (and for modern applications indispensa-
ble) position in comparison with many other data models.
In general, it is assumed that always logically predictable
results are produced. In this respect SQL has certain
shortcomings.

Suppose that a new vehicle is designed such that we
need one hour for a certain distance, yet for another
comparable distance more than a week. Even when the
vehicle has a beautiful color, wonderful and comfortable
chairs including a user friendly dashboard, the vehicle
would remain unused because of the previous transporting
properties. A time difference of a few hours (for example
caused by traffic jam) would be acceptable under certain
circumstances, but a time difference of this order (hour
versus week) would not be acceptable.

In the database area there is a vehicle with foregoing
properties that is accepted by everybody. It is almost
superfluous to say that the standard data language for
databases agrees with the foregoing description. In the
database area this is accepted because a better alternative
is unknown.

How is it possible that such a situation can continue?
The most important reason seems to be the fact that the
performance of computer hardware and software has
increased more than one hundred times since the early
eighties (the beginning of data languages in practice): if in
the beginning a day was needed to solve a certain
problem, now less than ten minutes are needed. Nobody
feels any pain. There remain opportunities to tackle new
more complex problems. We possess enough creativity to
accept new challenges, so that is what we do. The time is
ripe to start with problems like data mining and data ware-
housing. Then suddenly we discover that modern software
does not perform so well. Database users must be warned
constantly for the limits of the data language to avoid
serious performance problems.

Even now, nothing would be wrong if computer
capacities could grow again one hundred times. However
this is not expected, so everybody tries to find a solution
again in brute force. In the past hardware has solved so
many problems, why not try again. So we try massive
parallel hardware. Hundreds of processors in parallel
promise an enormous improvement. If we succeed, we can
continue on the same basis for another decade.

This paper is about a new elegant conceptual (not a
brute force) approach for the previous problems. Many
subjects are not covered in this paper. We do not pay
attention to existing SQL-products which are close to each
other and are based on the present database standard.
These systems are often good implementations of this
standard. We do not pay attention to specific software by
which improvements can be achieved. In this area a lot
has been achieved and there is no illusion now to add any
contribution to this field. Finally hardware is out of reach.
Leading companies have created the present high technical
level, we have no illusion to contribute anything whatso-
ever. The only (but important) thing that remains is the
introduction of a new revolutionary conceptual approach
that creates extreme performance improvements.

This new conceptual approach is no longer only a
range of ideas. Meanwhile we have also developed an

J.H. ter Bekke, Can We Rely on SQL?, Proceedings DEXA’97 378



extensive and reliable prototype of a software system (see
[3] and [4]) that has been used in several practical
circumstances. Although the realized software has been
designed primarily for correctness and not for perfor-
mance, the differences with existing systems are gigantic.
To give an idea: in complex situations we might think of
a factor of one hundred (or much more) faster: it seems
that long duration queries have disappeared.

The new possibilities would be restricted if only
highly specialized professionals could use the approach.
Experiences in education [1] and in practice show that this
is certainly not the case. Reliable results are now easily
obtainable for a much larger group than in the past.

What is the essence of this new approach, why can
it be so simple, fast, predictable and reliable? In fact, the
kernel of this approach was the main goal many years
ago: try to create a theory for databases based on one
single concept similar to mathematics which is also based
on one single concept: the set concept. In the seventies
this was the goal for researchers who worked on the
relational database theory. They based their theory on the
set concept and they failed. They came up with a data
model based on one single data structure.

If existing mathematical concepts cannot help us, then
it seems that for databases a different view on reality is
needed. We must try to create for this view our own
conceptual framework. Lessons from the past from the
application of the set concept must not be forgotten.
Possibly we can develop a new, but in a certain sense
analogous theory with similar properties.

It is well known that in an abstraction (which plays
a role in both disciplines) we emphasize certain aspects
and ignore others. Possibly we must ignore in databases
things which are essential in mathematics and emphasize
things that are completely irrelevant in mathematics. In
that case a similar situation can arise. We do not ignore
the existing, we add something similar to it for our own
purpose.

This paper contains some simple problems which will
be solved using SQL. Further analysis shows where
problems occur and how these can be solved in practice.
These adaptations require the level of an advanced user.
Besides that, these adaptations lead to an extreme
performance degradation of one hundred times (or even
more than one thousand times). Later the same problems
are solved using the semantic Xplain approach. These
solutions require only a beginner’s level. It is evident that
using this approach the requirements regarding flexibility,
performance and reliability are met in all respects.

2. A simple SQL database

Many examples can be given of problems which can
occur in using SQL. This paper will analyze only one

single aspect using a few simple examples. They are char-
acteristic for a large class of database queries. Assume a
simplified database with items and sales. The relational
model for this consists of the following relations:
• items, for items are relevant: item identification,

description, quantity in stock and price. These
properties are stored in the ITEMS table.

• sales, for each sales transaction are relevant: sales
identification, item number, date (week and day),
number and amount. These properties are stored in
the SALES table.

This leads to the following table definitions in SQL.
Notice that domains and referential constraints are part of
these definitions.

CREATE TABLE ITEMS (
ITEM# CHAR (4) NOT NULL,
DESCRIPTION CHAR (13) NOT NULL,
STOCK NUMERIC (4) NOT NULL,
PRICE NUMERIC (4,2) NOT NULL,
PRIMARY KEY (ITEM#) );
CREATE TABLE SALES (
SALE# CHAR (4) NOT NULL,
WEEK NUMERIC (2) NOT NULL,
DAY CHAR (3) NOT NULL,
ITEM# CHAR (4) NOT NULL,
NUMBER NUMERIC (4) NOT NULL,
AMOUNT NUMERIC (4,2) NOT NULL,
CHECK (DAY IN ’Mon’,’Tue’,’Wed’,’Thu’,’Fri’,’Sat’),
PRIMARY KEY (SALE#),
FOREIGN KEY (ITEM#) REFERENCES ITEMS );

We consider the following contents with sales data. These
data enable us to verify query results. It seems super-
fluous, but it is essential to realize that for each database
the closed world assumption holds. For the sales table it
means that only sales are stored in this table, not the non-
sales. Also for the items table holds: only existing items
are stored in this table, not the non-items.

ITEM# DESCRIPTION STOCK PRICE

I1 Table 20 234.00
I2 Chair 50 114.00
I3 Lamp 15 378.00

SALE# WEEK DAY ITEM# NO. AMOUNT

S1 1 Mon I2 1 114.00
S2 1 Tue I1 2 468.00
S3 1 Wed I3 1 378.00
S4 2 Mon I1 1 234.00
S5 2 Sat I2 4 456.00

J.H. ter Bekke, Can We Rely on SQL?, Proceedings DEXA’97 379



We specify now two simple queries for which similar
formulations can be found in any textbook on relational
databases (see: [5] page 155 ff., [6] page 416 ff., [7] page
234 ff., [8] page 217 ff., [9] page 207 ff.]).

S1: Determine the turnover per item.

SELECT ITEM#, TURNOVER = SUM (AMOUNT)
FROM SALES
GROUP BY ITEM#;

ITEM# TURNOVER

I1 468.00
I2 702.00
I3 378.00

S2: Determine items for which the turnover decreased in
week 2 compared with week 1.

SELECT I.ITEM#, DESCRIPTION
FROM ITEMS I, SALES S2
WHERE I.ITEM# = S2.ITEM#
AND S2.WEEK = 2
GROUP BY I.ITEM#, DESCRIPTION
HAVING SUM(S2.AMOUNT) <

(SELECT SUM(S1.AMOUNT)
FROM SALES S1
WHERE S1.ITEM# = I.ITEM#
AND S1.WEEK = 1);

ITEM# DESCRIPTION

I1 Table

Well-trained SQL programmers know that we must
start with a calculation of turnovers in one week. In this
expression an inner block is needed to compare sales of
week 2 with sales of the same item in week 1 (that is the
reason of a join between sales from the second SELECT
with items from the first SELECT).

The result consists of only item I1. This is incorrect.
Item I3 has been sold in week 1 and not in week 2 and
must therefore be included in the result. The first SELECT
however selects only items sold in week 2 (ITEM#s I1
and I2). For these items only sales in week 1 are
compared (ITEM# I1 has lower sales). In the result
ITEM# I3 is missing, because it was not sold in week 2.
This problem can be solved by adding items sold in week
1 and not sold in week 2 as follows:

SELECT I.ITEM#, DESCRIPTION
FROM ITEMS I, SALES S2
WHERE I.ITEM# = S2.ITEM#
AND S2.WEEK = 2

GROUP BY I.ITEM#, DESCRIPTION
HAVING SUM(S2.AMOUNT) <

(SELECT SUM(S1.AMOUNT)
FROM SALES S1
WHERE S1.ITEM# = I.ITEM#
AND S1.WEEK = 1);

UNION
SELECT I.ITEM#, DESCRIPTION
FROM ITEMS I, SALES S
WHERE I.ITEM# = S.ITEM#
AND WEEK = 1
AND I.ITEM# NOT IN

(SELECT ITEM#
FROM SALES
WHERE WEEK = 2);

Characteristic for this solution is the fact that the
addition is not generic; the repair is dependent on the
required relationship (< or >) and the order in which week
1 and week 2 occur in the solution. Now that this is a
known fact, let us now also inspect the other query.

Query S1 is conceptually wrong but the query
produces accidentally the correct result. However, unsold
items are not selected. The following addition is therefore
required:

SELECT ITEM#, TURNOVER = SUM (AMOUNT)
FROM SALES
GROUP BY ITEM#
UNION
SELECT ITEM#, TURNOVER = 0
FROM ITEMS
WHERE ITEM# NOT IN

(SELECT ITEM#
FROM SALES);

It is obvious to say that these examples have shown
that SQL statements are valid for only one single problem
and cannot be used for a class of similar problems.

These problems demonstrated an essential problem in
SQL. In SQL a set function (such as SUM) must always
be used together with one single (eventually derived)
table. No use is made of the relationships in the database.
Semantics as expressed in the database by means of
PRIMARY KEY and FOREIGN KEY specifications are
completely missing.

Additions to queries, as shown before, result in a
gigantic performance problem. Even if the original wrong
formulation can be executed in a reasonable time, the
extended query requires a multitude of this time. In a large
database this can be easily one hundred times or even
much more. Presumably this is mainly caused by building
and scanning temporary tables over and over again.

J.H. ter Bekke, Can We Rely on SQL?, Proceedings DEXA’97 380



3. Semantics in databases

A set is completely defined by a certain collection of
elements into a unit. This set-element membership
relationship is fundamental (it occurs in the mathematical
axioms) and plays a role in all set operations.

In computer science set elements are often transient.
For example, when a database contains data about clients,
individual occurrences of clients can be considered as a
coincident (they may come and go without changing the
type client). So, types occurring in a database (such as
client) can impossibly be defined by these occurrences.
This implies that we cannot base the theory on the set
concept. The concept of a relation from relational
databases is therefore inapplicable in the database area.
Individuals do not play any role in the definitions, they are
also completely irrelevant in operations on types. We
ignore them here completely.

The properties of type instances play an essential
role in databases. In database terminology: attributes
define a type; attributes make the meaning of a type clear.
This is expressed in the concept of aggregation: a collec-
tion into a type of certain attributes. So in databases the
type-attribute membership relationship is fundamental,
this relationship defines the semantics of a type. This is
why we arrive at two analogous concepts. In mathematics
an element can appear somewhere else as a set, in
databases an attribute can appear somewhere else as a
type. In mathematics we have also operations on sets:
intersection and union. These operations can also be
defined in the database area; we call them generalization
and specialization.

If an attribute is somewhere else considered as a type,
then it means that the attribute is related to that type. This
property does not have to be defined separately; it is
indissolubly connected with these definitions. The same is
true for the mathematical equivalents. Such a property is
called inherent.

Besides structural definitions also certain language
constructs by which information can be derived from a
database are needed. It implies usage of the inherent
relationships, in other words semantics is essential. This is
illustrated with the following simple examples.

4. The semantic alternative

According to the semantic Xplain model [2] the sales
example consists of two interrelated types. The referential
property is expressed by the used type names and attribute
names. Besides that, base type day is defined by means of
an enumeration. Only the types day, item and sale have a
corresponding data structure. The complete definition of
the previous sales example is as follows:

base day (A3) ("Mon","Tue","Wed","Thu","Fri","Sat").
base week (I2).
base amount (R4,2).
base description (A13).
base stock (I4).
base price (R4,2).
base number (I4).
type item (A4)= description, stock, price.
type sale (A4) = week, day, item, number, amount.

We consider now exactly the same database contents
with sales data. In this case we don’t see any difference
on the implementation level between the relational
database and the semantic database of Xplain. The only
difference is its interpretation.

item description stock price

i1 table 20 234.00
i2 chair 50 114.00
i3 lamp 15 378.00

sale week day item number amount

s1 1 Mon i2 1 114.00
s2 1 Thu i1 1 234.00
s3 1 Wed i3 1 378.00
s4 2 Mon i1 1 234.00
s5 2 Sat i2 4 456.00

X1: Determine the turnover per item.
This query requires the two related types. Determina-

tion of the total quantity is formulated by using this
relationship in the extend-statement. The extend-statement
results in a derived attribute value for each stored item
(note that the domain of type item is given in only one
place, indicating the type we need for this extend). The
next step is to select the derived information using the get-
statement. This results in the following:

extend item with turnover =
total sale its amount
per item.

get item its turnover.

item turnover

i1 468.00
i2 702.00
i3 378.00

X2: Determine items for which the turnover decreased in
week 2 compared with week 1.

J.H. ter Bekke, Can We Rely on SQL?, Proceedings DEXA’97 381



complexity complexity

105 105

100 100

95 95limitlimit moremore

90 90

0 1 2 3 4 levels 0 1 2 3 4 5 6 7 steps
------- SQL ------- ------- Xplain -------

Figure 1: Query complexity in SQL and Xplain.

extend item with turnover1 =
total sale its amount
where week = 1
per item.

extend item with turnover2 =
total sale its amount
where week = 2
per item.

get item its description
where turnover1 > turnover2.

item description

i1 table
i3 lamp

All Xplain solutions are without anomalies. Experi-
ences show that execution time for these solutions is
always linear. This is significantly less than in case of
SQL. Tests in practice have shown ratios of 100:1 or
more. In stead of waiting a few seconds in Xplain one
must wait several minutes in SQL. This is no problem if
one has the time to wait: it is unacceptable when the
information has lost its relevance in that period. Xplain-
solutions allow query adaptation to solve similar problems
and interactive database use. In SQL both are not allowed.

The above experiences have created a difficult
situation. If one has to wait for a long period to get an
answer but a better alternative is unknown, then one can
leave it at that. However when it is known that the waiting
period is completely unnecessary, even stronger: the
process can be executed more than one hundred times
faster without complex repairs or programming tricks, one
gets frustrated and uncertain. The only thing that’s needed
is another interpretation and the recognition of certain
quantities (such as turnover) which can also be used in
other problems.

5. Performance analysis

First remarkable difference between the approaches
is that derivation of information in the semantic model
always uses the semantics as expressed in the definition of
the data model. The structure of the extend-statement
denotes that for each instance of a type certain information
must be derived from another type. In SQL a set function
(such as SUM) must always be applied on one and only
one (eventually derived) table. This implies that the
attribute plays the role of domain. It leads to the
mentioned conceptual problems. Repairs that result from
this have two main drawbacks:

• For each non-trivial query the users must be aware of
a sudden occurrence of this phenomenon. User can
become uncertain. It is in a way comparable with the
situation occurring with divide-by-zero in the
application of mathematics. In computer program-
ming sometimes such a mistake occurs. The differ-
ence with the divide-by-zero problem is that the
computer system will often give a warning in case of
a divide error (or worse: a core dump) or that an
occurrence of the problem can be derived from the
result. In the SQL problem there is no warning and
in the result this is not visible.

• The necessary repairs lead often to queries which are
very complex and hard to maintain. This has enor-
mous consequences for the costs for maintenance.
Besides that, repairs lead to a dramatic performance
degradation. Tests in practice with real problems
from the area of executive information systems have
shown inexecutable queries with an execution time of
more than one week on a modern SUN Sparc Station
with 96 Mb internal memory. Another big difference
is the formulation in one complex step versus a
formulation in a few simple steps. This results in
different complexities. This can be illustrated with
figure 1.

J.H. ter Bekke, Can We Rely on SQL?, Proceedings DEXA’97 382



execution time execution time table sizes in computer system
SQL Xplain number of rows

126 sec. 32 sec. 26 and 10 000 486DX PC
30 310 sec. 115 sec. 25 000 and 10 000 486DX PC
> 1 week 410 sec. 40 000 and 500 000 SUN Sparc Station

(> 600 000 sec.) + 96 Mb intern

Table 1: Execution times with SQL and Xplain

In SQL one is often inclined to formulate one single
statement for a problem. In Xplain one needs in general
only a few simple statements. This difference has two
important consequences:

• The Xplain formulation is unique for a certain
problem and can therefore easily be extended to the
solution of a more complex problem. On the other
hand, in SQL one encounters very soon the limits of
what humans can comprehend. For example, experi-
ences from programming languages have learned that
the number of abstraction levels humans can under-
stand at once is limited to about four levels. Above
this number one must split up the problem into
smaller problems. At that moment a standard splitting
procedure is missing and the advantages of an
optimizer are lost.

• The complex SQL formulation results in an execution
time of higher order. On the contrary, in Xplain all
steps lead to maximal linear order. This implies that
for large databases SQL often leads to the maximal
processing capacity, while this limit is never reached
in Xplain. This conclusion can also be drawn from
several practical test cases. Without further
explanation three results from the area of executive
information systems are given in table 1. The times
needed to produce the wrong results are obviously
not given.

Conclusion

It is too bad that developments of SQL where solely
driven by the goal to create a data language for untrained
users. Fundamental properties are therefore pushed too
much into the back. This has resulted in a language that
due to its bad habits is not very useful for humans (both
untrained and professional users). Professional users would
appreciate a simple language with fundamental properties
which enable them to derive reliable information from a
database. The semantic data language Xplain fulfills this.
Remarkable is that none of the given semantic
formulations needed any repair.

Another essential problem is the following. Often
users of other data modeling techniques assume that a
translation into a relational data model is enough. The

applications can then safely be implemented in a relational
DBMS. In other words: implementation is of no concern,
these problems have been solved by others. This paper has
shown that this is a wrong conclusion. The foregoing has
shown that those who follow other data modeling
approaches cannot shelter behind relational implemen-
tations; in that case a sound foundation is lacking and
systems are built on quicksand. Everybody has to indicate
how a reliable implementation can be achieved. The
Xplain DBMS has shown how such a situation can be
achieved.

The problems in this paper may look trivial at first
instance. Experiences has shown that these situations often
occur unexpectedly in complex situations. The given
critics are therefore more fundamental: it is almost
impossible to realize complex systems using a data
language with anomalies.

Acknowledgments
I thank my colleagues Dolf van der Ende and Bert Bakker
for discussions on SQL pitfalls. I thank Ranjan Tewarie
for his efforts in performance analyses between relational
and semantic databases in the area of executive infor-
mation systems.

References
[1] J.H. ter Bekke, Comparative study of four data modeling

approaches, Proc. 2nd EMMSAD, Barcelona (1997).
[2] J.H. ter Bekke, Semantic data modeling, Prentice Hall,

Hemel Hempstead UK (1992).
[3] J.H. ter Bekke, Complex values in databases, Proceedings

DKSME 1994, Hong Kong (1994), pp. 449-455.
[4] J.H. ter Bekke, Meta modeling for end user computing,

Proc. DEXA Workshop 95, London (1995), pp. 267-273.
[5] C.J. Date, An introduction to database systems, Addison

Wesley, Reading Mass. (1990).
[6] T. Connolly, C. Begg and A. Strachan, Database systems:

a practical approach to design, implementation and
management, Addison-Wesley, Wokingham UK (1995).

[7] B.C. Desai, An introduction to database systems, West
Publ. Company, St. Paul MN (1990).

[8] J.D. Ullman, Database and knowledge base systems Vol. 1,
Computer Science Press, Rockville MD (1988).

[9] R. Elmasri and S.B. Navathe, Fundamentals of database
systems, The Benjamin/Cummings Publ. Company,
Redwood City CA (1994).

J.H. ter Bekke, Can We Rely on SQL?, Proceedings DEXA’97 383


