

MODELING AND QUERYING RECURSIVE DATA STRUCTURES
I: INTRODUCTION

J.H. ter Bekke and J.A. Bakker

Delft University of Technology
Faculty of Information Technology and Systems
e-mail: {J.H.terBekke, J.A.Bakker}@its.tudelft.nl

ABSTRACT

Present recursive applications for recursive data
structures require complex software packages; they
cannot be specified in a declarative query language.
Recursive queries are complex when a kind of data
modeling is applied that emphasizes variable relationships
instead of definite and inherent (structural) relationships:
users must specify processing details as navigation and
iteration.
 Another kind of modeling supports definite
relationships; an example is the relational model. Although
this kind of modeling makes control statements in queries
superfluous, the relational model still creates problems for
end users because relationships between tables cannot be
specified inherently; they are specified by relationships
between key attributes. Consequently, users interested in
data from diverse tables have to specify join operations,
which offers opportunities for semantic errors such as
joining over non-key attributes.
 Also semantic data modeling is based on definite
relationships, but contrary to the relational model it
enables us to specify data structure in an inherent way.
As a consequence join terms are superfluous: processing
details can be derived by a software system interpreting
semantic metadata.
 Using family trees as an example, we compare the
consequences of the two categories of data modeling
mentioned above for the specification of non-recursive
queries, whereas the following paper [21] will show that
inherent specification of data structure is also a
fundamental prerequisite for the declarative specification
of recursive operations. The resulting processing is
reliable and efficient as can be demonstrated by a working
DBMS.

KEYWORDS
Query language, recursive data structure, recursive query
processing, semantic data modeling, metadata, end user
computing.

1. Introduction

A collection of objects O1, O2, …... has a recursive
definition when O1 is defined on known concepts and the
definition of On+1 is based on the definition of On for
positive n, so when the predecessor occurs as a property
(or attribute) in the definition of each successor.
Recursion can occur in data structures and in database
applications as well. The present paper focuses on
recursive data structures. We think that applications
(recursive and non-recursive as well) should be specified
as declarative queries, because that probably is the best
way to support ad-hoc querying by end users.
 Recursive data structures, for example simple
hierarchies in family trees, have always played an
important role in database management systems [7]; they
were driving forces in the early stages of developing
database management systems. However, the modeling of
recursive data structures has been a major problem for
many years. For example, in classical hierarchical models
(i.e. models based on 1:n relationships) certain
modifications must be carried out to represent a recursive
data structure, which resulted in a complex way of
querying recursive data structures. This will be discussed
in more detail in section 2.
 In general, classical hierarchical models require
complex computer programs including functional
recursion, nesting, navigation and iteration [5]. However,
the simpler (linear) relational model, in which modeling
with self-reference is allowed, does not offer practical
query language solutions for recursive applications [5, 8].
Also here computer programs are needed for recursive
applications with the same properties as before. Further,
an extension of the relational concept with nested (Non
First Normal Form) relations did not provide a solution to
the problem [9, 13]. More recently, certain forms of
recursion were proposed in the area of relational
databases. Draft SQL3 [22] contains extensions by which a
limited class of recursive problems can be formulated.
These solutions are derived from recursive Datalog rules
[6], but are difficult to be understood or specified by end
users. Another disadvantage is that the user must be fully
aware of and is responsible for the finiteness of the

recursion process. Later on, extended and adapted
hierarchical models were introduced again for certain
applications [1, 3]. Although they sometimes could offer
faster solutions than relational systems, they still could
not support all kinds of queries efficiently. Despite these
diverse approaches, a fundamental breakthrough for
recursive queries seemed to be unattainable. Although not
proven, the general opinion in the field was that only
complex programs could offer a solution for recursive
queries.
 It is our objective to demonstrate that simple query
solutions, also for recursive queries on recursive data
models [21], are possible when next to nesting, navigation
and iteration also other procedural aspects as explicit join
terms and ordering do not occur in query specifications.
The relational model enabled us already by using simple
structures to make iteration and navigation superfluous in
declarative query specifications, but recursive
applications require more from the semantics of a data
model: in order to avoid procedural details in query
specifications, software must be able to derive the
required processing from a declarative query and
guarantee process termination. The more recent
development directed towards hierarchical models seems
to be incompatible with these requirements.
 Data structure and data processing can have different
characteristics. It is possible that a data structure is
recursive but the application is not, and vice versa. Earlier
papers discussed recursive applications related to non-
recursive data structures represented by graphs: solutions
for critical path analysis [18], bill of materials applications
[19] and longest path calculation [20] were presented. The
last paper also describes how declarative recursive queries
on graph data are translated into a well-ordered finite
procedure. The present paper only discusses applications
for simple recursive data structures, but a more complex
recursive model for version management based on
semantic concepts was presented earlier [16]. A further
restriction is that we only discuss approaches in which a
database is described on a conceptual level using a certain
data model. Database applications should offer solutions
without irreversibly changing the current contents of the
database by query execution; therefore we do not discuss
logic databases in which facts and rules together define
the database [2, 11]. We also require that all data occurring
in a database satisfy certain structural patterns and satisfy
certain semantic constraints, which are determined by the
underlying data model (for example hierarchical, network,
relational or semantic model).
 This paper is organized as follows. First, we discuss
some data modeling alternatives for recursion. We
distinguish two categories of modeling: approaches
emphasizing variable relationships of objects (section 2)
and approaches only allowing objects having definite
relationships (section 3). The kind of data modeling is of
crucial importance because it determines the opportunities
for querying (section 4). Because the determination of the

essential semantic relationships is decisive, no
compromise whatsoever should be made there. Some
examples of non-recursive queries will be specified using a
recursive data structure for family trees. These examples
will demonstrate that only definite relationships should be
used in order to prevent pitfalls and misinterpretations. All
applied semantic concepts have been implemented and
extensively tested using the Xplain DBMS [17], version
5.7.

2. Modeling approaches emphasizing
 variable relationships

Many data models are based on view modeling. Examples
are models allowing nested hierarchical structures. These
models are similar in the modeling of recursion using 1:n
relationships. This occurs for example in well-known
hierarchical, network and object-oriented data models. A
model with nested hierarchical structures (for example an
object oriented model [1]) may allow the following data for
a recursive data structure. Here the name and birth year of
persons are represented through definite relationships,
but the relationship between parent and children is
defined with a hierarchical, thus variable, relationship. The
following content is an example:

(Peter, 1963, {(John, 1988, {}), (Anne, 1990, {})})
(Susan, 1964, {(John, 1988, {})})
(Karen, 1965, {(William, 1989, {})})

This example illustrates a number of shortcomings of a
nested data structure:
• Completeness and consistency of the data is unclear:

A database system requires a closed world
assumption; only facts are registered. No conclusion
can be drawn from the absence of data; this absence
can be accidental, but also be intended.

• The structure contains an undesirable asymmetry:
E.g., Peter and Anne are differently modeled. It is easy
to determine the children of a person, but it is difficult
to determine the parents of a person: this requires
software with nesting, navigation and iteration. The
result of this determination is difficult to interpret.

• Essential relationships are missing and cannot be
derived: From the structure alone it is unclear how
many parents a child has. A child can have two
parents (see parents of John), can have more parents,
but also have one parent (see parent of William and
Anne), or even zero (as Peter, Susan and Karen).

• Complex update properties: When a person becomes
parent (here for example John), then the structure of
others (here Peter and Susan) must be adapted.

• The structure contains redundancy: For example, the
birth year of John occurs several times in the
structure.

The consequences of an emphasis on variable
relationships can be made visible. An example is the
modeling of recursion according to the CODASYL
network approach [4, 5, 7]. Figure 1a contains a simple
recursive structure in a collection of persons. Each person
can be parent of a number of children. This recursive 1:n
relationship, modeled by a set type ‘parent’ in which
‘person’ is both member and owner record-type, is not
allowed in many implementations of CODASYL networks
[5].

 children is -person
 (1:n) (1:1)
 parent

 (a) (b)

Figure 1. CODASYL recursive set (a)

 and implementation (b)

The required modification is mainly caused by the
interpretation of the relationship between persons. This
relationship is conceived as being 1:n, in other words with
1 person (the parent) correspond n other persons (the
children). This interpretation, a presentation of an access
path (an arrow) in the view, implies implementation
problems that can be solved by the introduction of an
additional link-record-type ‘child-link’ (figure 1b) not
containing any data fields together with two set types
defining the relationship between person and children and
between child and person.
 The CODASYL data manipulation language is based
on programming concepts and therefore unsuitable for
end users. The required model modifications deviate from
the proper definition of recursion given before. Therefore
recursive applications will inevitably become very complex
programs. These problems become even worse when the
relationship with two parents must be registered.

3. Modeling approaches only allowing
 definite relationships

The relational data model is the first data model that
breaks with the tradition of nested structures: only linear
structures are allowed. In this model only definite
relationships (attributes) of an object are allowed. The
earlier mentioned variable relationship can be considered
as a derivation of this fundamental relationship. This
approach enables us to specify declarative queries
without nesting, navigation and iteration. A relational
specification of recursive applications could be based on

the following definition:

relation person
 (name, birth_year, father, mother)

The relationship between parent and children is not
defined by means of inherent metadata, but by primary
and foreign key specifications (subset constraint specified
by a REFERENCES statement in a CREATE TABLE
statement)). Although the name of an attribute may be
identical to the name of a relation, relational concepts do
not allow us to specify recursive relationships in an
inherent way as suggested by the following definition:

relation person
 (name, birth_year, father_person, mother_person)

Consequently, recursive relationships are difficult to
detect. Primary and foreign key values refer to attribute
values. They do not refer to structures (i.e. the relation
‘person’). The relation is therefore according to the earlier
definition not a proper recursive definition, which of
course has consequences for data manipulation. We
illustrate this by some queries; the first one is retrieving
the children and grand children of person “Henk”, using
the first mentioned relational definition of ‘person’:

(SELECT name, birth_year
 FROM person
 WHERE father = “Henk”)
UNION
(SELECT x.name, x.birth_year
 FROM person x, person y
 WHERE x.father = y.name AND y.father = “Henk”
 OR x.mother = y.name AND y.father = “Henk”);

We refrain from showing a solution for the retrieval of all
descendants of a selected person. For such recursive
problems programs containing embedded SQL are advised
[5].

Another example is the retrieval of mothers:

SELECT m.name, m.birth_year
FROM person m
AND EXISTS (SELECT *
 FROM person x
 WHERE x.mother = m.name);

Another modeling approach, also only applying definite
relationships, is the semantic approach introduced in [10,
14] and applied in the Xplain-DBMS. This approach
enables us to model family trees as follows:

type person = birth_year, father_person, mother_person.

person person

child-link

Using the last definition, persons can be identified by a
name; so there is no need to define ‘name’ as an attribute.
The Xplain language enables us to specify queries such
as the following one, dealing with the children and grand
children of Henk:

get person its birth_year
 where father_person = “Henk”
 or father_person its father_person = “Henk”
 or mother_person its father_person = “Henk”.

By default, the result of such retrievals always contains
the object identifiers of retrieved objects, in this case the
name of retrieved persons.

Another application is determining mothers. Now we first
derive a Boolean attribute ‘person its is_mother’:

extend person with is_mother = any person
 per mother_person.

get person its birth_year where is_mother.

These examples indicate that the exchange of concept
interpretations (type versus attribute) is, as will be made
clear later, of crucial importance for declarative solutions,
in particular for recursive problems: it enables us to apply
the its construct in an attribute path.
 The presentation of recursive applications of the
Xplain language will be postponed to a following paper
[21], where we present some recursive applications,
including a solution for finding all descendants of a
certain person. Here, we continue with a discussion of
modeling approaches and their consequences for data
manipulation.

4. Discussion

Two kinds of relationships can be recognized in family
trees, those between the attributes of a person and those
between persons. In both hierarchical and network models
variable relationships are used for the interrelationships
between objects (for example 1:n relationships between
persons) and definite relationships for the relationships
within an object (for example: each person has a name and
a birth year as well). There seem to be two fundamental
approaches to the modeling of recursive relationships:
• Variable relationship
 For example: ‘each person has a number of children’.

This is expressed in an access path and not in data.
Therefore it does not lead to metadata: the inverse
relationship ‘each person has a parent’ cannot be
derived by the software system; the user must specify
a procedure for that purpose.

• Definite relationship
For example: ‘each person has a parent’. This is
expressed in a recorded property (namely as an
attribute of ‘person’) and can possibly lead to
metadata. The inverse relationship can be derived by
the software system (see [15] for an application in a
view generator). This approach contains therefore
also the possibilities that can be defined with variable
relationships.

In classical hierarchical models designer and user (they
must cope with different concepts like ‘parent’ and ‘child’)
must manage the access to relationships, whereas in the
relational and semantic model these relationships are
managed by the software system. In the last two
approaches users can consider ‘parent’ and ‘child’ as
derivable concepts. This freedom of interpretation offers
possibilities for a declarative query language.
 An advantage of the relational and the semantic
approach as well is that users are not hindered by
predefined variable relationships. The user does not have
to indicate that the system should deviate from predefined
relationships (for example, when the inverse relationship
must be considered). This implies that the responsibility
for the proper usage of relationships is delegated to the
query language concepts and the software system (i.e. the
query language processor). Of course, an essential
precondition is that the software has enough metadata to
carry out the required checks and to take the decisions for
a correct processing.

Both the relational model and the semantic model use only
one kind of relationship, namely the definite relationship.
The variable relationship is considered as a derivable
relationship. However, contrary to the relational model, all
relationships in a semantic model are specified in an
inherent way (in structure, not by subset constraints);
therefore they lead to metadata. This makes it possible to
use all relationships in a uniform way: a type is defined by
its attributes. This situation is comparable with
mathematical set theory in which only one fundamental
relationship occurs: a set is defined by its elements (the
membership relationship in the first axiom [12]). The
following paper [21] will refer to this situation and will
present semantic solutions for querying recursive data
structures.

References

[1] M. Atkinson, F. Bancilhon, D. DeWitt, K. Dittrich, D.

Maier and S. Zdonik, Object-oriented Database
System Manifesto, Proceedings IEEE 1st
International Conference on Deductive and Object-
Oriented Databases, Kyoto, (1989), pp. 40-57.

[2] F. Bancilhon and R. Ramakrishnan, An Amateur’s
Introduction to Recursive Query Processing
Strategies, Proceedings ACM SIGMOD, (1986), pp.
16-52.

[3] R.G.G. Cattell, Object Data Management, Addison-
Wesley, 1994.

[4] CODASYL Database Task Group April 1971 Report,
ACM New York, April 1971.

[5] T. Conally, C. Begg, A. Strachan, Database systems: A
practical approach to design, implementation and
management, Addison-Wesley, Reading Mass. 1995.

[6] G. Gardarin and P. Valduriez, Relational databases
and knowledge bases, Addison-Wesley, Reading
Mass. 1989.

[7] D.M. Kroenke, Database Processing: Fundamentals,
Design, and Implementation (sixth edition), Prentice
Hall, Upper Sadle River, NJ, 1998.

[8] C.H. Papadimitriou, Database Metatheory: Asking the
Big Queries, Proceeedings PODS ’95, San Jose CA,
(1995), pp. 1-10.

[9] J. Paredaens, D. Van Gucht, Converting Nested
Algebra Expressions into Flat Algebra Expressions,
ACM Transactions on Database Systems, 17, 1
(1992), pp. 65-93.

[10] F. Rolland, The essence of databases, Prentice Hall,
Hemel Hempstead, 1998.

[11] A. Rosenthal, S. Heder, U. Dayal and F. Manola,
Traversal Recursion: A Practical Approach to
Supporting Recursive Applications, Proceedings
ACM SIGMOD, (1986), pp. 166-176.

[12] J.R. Shoenfield, Axioms of Set Theory, In: Handbook
of Mathematical Logic, J. Barwise (ed.), North-
Holland, Amsterdam (1977), pp. 321-344.

[13] D. Suciu, J. Paredaens, Any algorithm in the complex
object algebra with powerset needs exponential space
to compute transitive closure, Proceedings 13th ACM
SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems, (1994), p 201.

[14] J.H. ter Bekke, Semantic Data Modeling, Prentice
Hall, Hemel Hempstead, 1992.

[15] J.H. ter Bekke, Complex values in databases,
Proceedings International Conference on Data and
Knowledge Systems for Manufacturing and
Engineering (DKSME ’94), Hong Kong (1994), pp.
449-455.

[16] J.H. ter Bekke, Semantic modeling of successive
events applied to version management, Proceedings
International Symposium on Cooperative Database
Systems for Advanced Applications (CODAS ’96),
Kyoto (1996), pp.32-39; also in: Cooperative
Databases and Applications, World Scientific,
Singapore, 440-447.

[17] J.H. ter Bekke, Advantages of a compact semantic
meta model, Proceedings 2nd IEEE Metadata
Conference, Silver Spring (1997).

 http://www.computer.org/conferen/proceed/meta97/
papers/jterbekke/jterbekke.html.

[18] J.H. ter Bekke and J.A. Bakker, Recursive queries in
product databases, Proc. 5th Int. Conference on
Flexible Query Answering Systems, (FQAS 2002),
Copenhagen, Denmark, October 27-29, 2002, LNCS
Vol. 2522, T. Andreasen, A. Motro, H. Christiansen,
H. Legind Larsen (Eds.), Springer-Verlag,
Berlin-Heidelberg (2002), pp. 44-55.

[19] J.H. ter Bekke and J.A. Bakker, Content-driven
specifications for recursive project planning
applications, Proceedings International Conference
on Applied Informatics (AI 2002), Innsbruck, Austria
(2002), pp. 448-452.

[20] J.H. ter Bekke and J.A. Bakker, Fast Recursive Data
Processing in Graphs Using Reduction, Proceedings
International Conference on Applied Informatics (AI
2003), Innsbruck, Austria (2003), pp. 490-494.

[21] J.H. ter Bekke and J.A. Bakker, Modeling and
Querying Recursive Data Structures II: A Semantic
Approach, Proceedings International Conference
Artificial Intelligence and Soft Computing (ASC
2003), Banff, Canada (2003).

[22] J.D. Ullman and J. Widom, A First Course in
Database Systems, Prentice Hall, 1997.

