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Abstract 
 
This paper presents an algorithm for recursive data 
processing in directed graphs. The proposed algorithm 
applies graph reduction in order to determine both starting 
points and a correct ordering of recursive operations, 
provided the directed graph is a-cyclic. Therefore it is 
essential that the algorithm is also able to detect cycles 
efficiently. The algorithm arose from the implementation of 
recursive, semantic query specifications and is 
implemented in a DBMS prototype. Experiments confirmed 
that the theoretically estimated time complexity is O(dN), 
where N is the number of arcs and d is the depth of the 
graph (d ≤ N). The worst-case performance is O(N2), also 
for cycle detection. 
 
Keywords : graph algorithm, longest path, recursion, query 
language, expressive power, semantic modeling. 
 
1. Introduction 
 
The main reason for the development of a generic 
algorithm for ordering arcs and nodes during recursive 
query processing was the objective that software should 
be able to determine starting points for data processing in 
directed a-cyclic graphs such that end-users do not have 
to specify these starting points. This complies with one of 
the main objectives of database systems based on the 
classical three-layer architecture to enhance that end-
users can specify queries in a declarative (content-based) 
way; they should mainly specify what and not how the 
problem should be solved.  
 This approach resulted already in a new query 
implementation in a semantic DBMS [9] with an interpreter 
able to translate non-procedurally recursive queries into 
simple, well-ordered recursive operations. Such a layered 
approach, separating what and how, is impossible if 
recursive operations are specified directly in a 
programming language: then the choice of starting points 
is an inevitable part of the problem, which might be 
difficult for end-users. For example, the algorithms of Baily 
[1] assume given starting points. And so do problem 
specifications as those presented by Garey and Johnson 
[5]. 
 In general, considering earlier approaches, ordering 
algorithms consist of two phases, in which successor lists 
play an important role [2, 4]. In the first phase, tuples from 

input are converted into successor lists in main memory. 
In the second phase the successor lis ts are expanded and 
written to disk. The large number of tuples created during 
this last phase results in time-consuming duplicate 
elimination and cycle detection, which might form an 
obstruction for processing complex graphs [6].  
 Contrary to these earlier approaches we use another 
solution; we consider only existing arcs of the graph and 
there is no need to expand it with successor lists. In this 
new algorithm only safe graph reduction takes place 
during the ordering of arcs, which makes the algorithm 
very efficient and creates only a minor dependency on 
main memory or disk. It makes the algorithm also suitable 
for large applications, even on small computers. Another 
advantage, in particular for casual environments as the 
Internet, is its reliability because graph reduction also 
enables us to detect cycles in a graph before starting 
recursive operations. This approach therefore shifts the 
investigation of the correctness of the input graph data 
towards the DBMS: software is able to detect cycles and 
to give an appropriate error message to the end-user, who 
needs not to worry about starting points and cycles. 
 This paper continues with an introduction to semantic 
modeling in section 2 and discusses some examples of 
recursive queries in section 3. Section 4 presents the 
ordering and cycle detection algorithm. 
 
2. Semantic abstractions  
 
This section contains an overview of the semantic data 
modeling abstractions needed for graph applications [8]. 
The concept of type is fundamental. Types are 
represented by rectangles in diagrams. Aggregation is 
defined as the collection of a certain number of types into 
a unit, which can be regarded as a new type. A type occur-
ring in an aggregation is called an attribute of the new 
composite type. It is important to note the analogy with 
the mathematical set concept: attributes are considered as 
‘elements’ of a type. Aggregation allows view 
independence (object relativity): we can discuss the 
obtained type (possibly also acting as a property of 
another type) without referring to its attributes. By 
applying this principle repeatedly, a hierarchy of types can 
be set up. An example of a hierarchy depicting two 
relationships between two types is given in figure 1. 
Normally only composite types are visualized in an 
abstraction hierarchy. If a line connects two facing 



 

 

 
rectangle sides and the aggregate type (according to its 
definition) is placed above its attributes, this indicates 
aggregation. In our example database we consider the 
types ‘description’ and ‘length’ as base types. A type is 
completely defined by a list of its attributes, so we could 
apply the following type definitions to node and arc 
relationships shown in figure 1. Here we can consider, 
depending on the context, ‘node’ as a type or as an 
attribute in ‘arc its from_node’ or in ‘arc its to_node’. 
Although these attributes suggest that the direction of 
arcs is from ‘from_node’ to ‘to_node’, this data model 
does not prescribe this interpretation. The model also 
allows for another interpretation, in which arcs have the 
reverse direction. In section 3 we show that the recursive 
cascade statement determines the direction of arcs and the 
order of recursive processing.  
 
 
 

 
 
 
 
  

 
              type node =      description. 
              type arc    =       from_node, to_node, length. 
 

Figure 1. Abstraction hierarchy for directed graphs 
 
The corresponding semantic database contains two simple 
tables, partly shown in figure 2. 
 

node description 

A loc1 
B loc2 
C loc3 
F loc5 
.. .... 

 
 

arc from_node to_node length 

1 A B l1 
2 A B l2 
3 A C l3 
4 A F l4 
.. .. .. .... 

 
Figure 2. Example database 

 
 

3. Query specification 
 
The final result of an ordering of nodes in a directed 
graph, which is a prerequisite for recursive query 
processing, is determined by the position of the arcs in the 

graph. Our primary goal is therefore to re-order the 
collection of arcs, not the collection of nodes. This 
ordering is used in the processing of the following 
examples of the recursive update statement cascade; we 
could compare it to keeping score in a game. Recursive 
applications can be found in critical-path problems related 
to project planning [9] or product databases [10]. Here we 
give an example of a longest path calculation, related to 
the graph in figure 3. 
 
                                                                   E 
                    F                                                                          
                                          8           9           10                          
                                C           7           D             
           H          4                                                        
                                  3      5           6           G     
                     A                                B       
                                   1                
                                             2 
 

Figure 3. Example of a directed graph 
 
Many different paths can be followed in such a directed 
graph and at least one of them is the longest. Using the 
Xplain query language the first part of the solution is to 
calculate for each node the longest path from a starting 
node to that node, whereas the second part is to calculate 
for each node the longest path from that node to a last 
node. First, we explain the first part of the solution, 
specified as follows: 
 
extend node with first_path = 0.           
             /* Initialize all nodes, now ordering is irrelevant. */ 
 
cascade node its first_path = 
 max arc its length + from_node its first_path  
 per to_node.   
 
After executing this cascading update operation each 
node has a certain value for the first path starting in some 
node not pointed to by any arc; more than one starting 
point is possible.   
 Using a reduction scheme, the value of the first path 
of the nodes A, G and H remains 0 because there are no 
arcs pointing to them. They could act as a starting point. 
After the first reduction step a temporal value of ‘node its 
first_path’ can be calculated for the destination nodes B, 
C, E, and F using the lengths of the removed arcs 1, 2, 3, 4 
and 10. For the nodes C and F this value is the definitive 
value because they have only one in-coming arc.  
 After the second reduction step the value of the first 
path can be updated for the nodes B, D and E. After the 
third reduction step the first path of the nodes D and E 
can be updated. After the fourth reduction the first path of 
node E can be updated. Finally, after the fifth step, the 
recursion stops because the remaining graph is empty.  
 After this short description, we describe the recursive 
processing in more detail. A first step is the removal of 

arc 

node 



 

 

 
starting nodes: nodes without any in-coming arc. We can 
consider these nodes as ‘not referenced’ by any incoming 
arc. This operation is specified in the language C, using a 
copy of the graph data (instances of ‘node’ and ‘arc’ 
including their attribute values). For reasons of 
comprehensibility we could specify these operations in 
Xplain terms: 
 
extend node with in_degree  = count arc per to_node. 
delete arc where from_node its in_degree = 0. 
delete node where in_degree = 0. 
 
Consequently the arcs 1, 2, 3, 4 and 10 and the nodes A, G 
and H are removed firstly, which results in the graph in 
figure 4. In a similar way the remaining graph can be 
reduced. The final result is a correctly ordered sequence of 
groups, each containing a subset of removed arcs: [1, 2, 3, 
4, 10], [5, 7, 8], [6] and [9]. After this ordering, the data 
associated with the arcs of a group can be processed 
group after group, using ‘arc its length’ and ‘arc its 
from_node its first_path’. In this way the value of 
instances of ‘node its first_path’ is updated in a correct 
order. 
 
                                                                         E 
                           F                                                                     
                                                 8          9                                
                                      C           7           D             
                                                                             
                                               5            6              
                                                              B     
  

Removed arcs: [1, 2, 3, 4, 10] 
       

Figure 4 . Directed graph after the first reduction 
 
 
                                                               E  
                                                                              
                                                   9                                
                                                        D            
                                                                             
                                                   6          
                                                    B       
 

Removed arcs: [1, 2, 3, 4, 10], [5, 7, 8] 
              

Figure 5. Directed graph after the second reduction 
 
 
                                                                 E 
                                                                               
                                                      9                         
                                                          D             
                                                                            

Removed arcs: [1, 2, 3, 4, 10], [5, 7, 8], [6] 
 

Figure 6. Directed graph after the third reduction 

 
 
                                                     E 
                                                                                             

Removed arcs: [1, 2, 3, 4, 10], [5, 7, 8], [6], [9] 
        

Figure 7. Directed graph after the fourth reduction 
 
After the fifth reduction (removal of node E) the result is 
an empty graph.  
 
Now we discuss the second part of the problem: how to 
calculate for each node the longest path between that 
node and some finish node (a node without any out-going 
arc): 
 
extend node with last_path = 0.    
cascade node its last_path = 
 max arc its length + to_node its last_path  
 per from_node.   
 
Now the graph reduction has to start in finish nodes (here 
E, F and H). Arcs having a direction reverse to that in 
figure 3 could depict this reversed processing of data in a 
graph. Further reduction steps are similar to the first part 
of the solution. After this second cascading update we 
can calculate the longest path using the Xplain language:  
 
value longest_path = max node its first_path + last_path. 
 
All the arcs, including their nodes, on that longest path 
can be shown, sorted by increasing value for ‘arc its 
from_node its first_path’: 
 
extend node with relevant =  
 (first_path + last_path = longest_path). 
extend arc with relevant = 
 (from_node its relevant and to_node its relevant). 
get arc its from_node, to_node, from_node its first_path  
 where relevant per from_node its first_path. 
 
If the graph contains more than one longest path, then the 
counting of start and finish arcs specified by the following 
two retrievals will reveal this situation, even if all these 
longest paths have both the same start and the same 
finish:  
 
get count arc where relevant 
 and from_node its first_path = 0. 
get count arc where relevant 
 and from_node its first_path = longest_path. 
 
However, due to the nature of the problem, it is not 
possible to specify a declarative solution presenting each 
longest path and its correctly ordered sequence of 
constituting arcs. 
 From the semantic query specifications above follows 
that users do not specify start and finish nodes: all nodes 



 

 

 
may act as a starting point. The DBMS software 
determines the ordering of reduction steps from the 
cascade statement. 
 
4. Ordering algorithm 
 
The result of a recursive query is primarily determined by 
the position of arcs: the connections determine the 
topological ordering of nodes. Our primary goal is 
therefore to re-order the collection of arcs, not the 
collection of nodes. Only this ordering is used in the 
processing of the cascade statement; it is comparable to 
score keeping in a game. The general form of the cascade 
statement is:: 
 
cascade <subtype> its <cascade attribute> = 
 <function> <maintype> its <expression> 
 per <grouping attribute>. 
 
The following constraints regarding this statement must 
be satisfied: 
 
• <expression> must contain the <cascade attribute>, 

this can be determined during the parsing process of 
the query statement. The reference of <cascade 
attribute> in <expression> (for example: ‘from_node’) 
must differ from the reference in the <grouping 
attribute> (for example: ‘to_node’). If this condition is 
not satisfied the statement should be interpreted as a 
normal update statement without prescribed ordering. 

• <grouping attribute> (for example ‘to_node’) must be 
identical to <subtype> (for example ‘node’), possibly 
with a role added; 

• It is evident that all usual constraints hold, for 
example: types, attributes and operations must 
comply and all specified attributes and types must 
exist in the underlying data model. 

• It is only necessary to create a list of arcs such that 
an arc pointing to a node may only be followed by 
arcs starting in that node. Arcs are pointing to the 
node specified in the <grouping attribute>. For the 
calculation of ‘node its first_path’ it is ‘to_node’ and 
for ‘node its last_path’ it is ‘from_node’.  The desired 
ordering is therefore determined during the query 
parsing process, by Lex and Yacc. 

 
The algorithm for implementing a cascade query statement 
therefore consists of two steps of which the first is 
essential for the cascade statement: 
 
1. Determine the order in which the arcs can be 

processed. Note that only the cascade statement 
determines this ordering. The parameters for this 
ordering are determined during the parsing process of 
the query statement. This ordering is generally not 
needed in other query statements, such as the extend 
statement. 

2. Process all arcs in the cascade according to the 
ordering determined in step 1. Contrary to that, other 
statements use a system-defined ordering; then there 
is no need to order the execution of the statement. An 
example is the initialization of all instances of ‘node its 
first_path’ to zero using the extend statement. 

 
The parameters for the required ordering are determined 
by the DBMS during the parsing process of the query 
statement. The global structure of the ordering algorithm 
is straightforward. Including the detection of cycles, this 
algorithm is as follows:  
 
init_structures ();  
do {/* determine ordering */ 
  init_reference_counts ();  
  update_reference_counts ();  
  reduce_graph ();  
} 
until (no_reduction); 
 
if (number_of_arcs > 0) {/* remaining arcs*/ 
 do {/* error handling */ 
  init_reverse_reference_counts ();  
  update_reverse_reference_counts ();  
  reduce_graph ();  
 } 
 until (no_reduction); 
 print_arcs_in_cycles ();  
} 
 
The functions used fort the ordering algorithm: 
 
• init_reference_counts () 
 The collection of nodes is determined by the contents 

of the database. The semantic model requires 
referential integrity: it does not allow any arc pointing 
from/to a non-existent node. This function initializes 
for each node all reference counts (number of arcs 
pointing to a node) to zero. 

• update_reference_counts () 
 The collection of arcs determines the number of 

references to a finish node. This function requires a 
scan through the collection of arcs. For N arcs this 
scan has a time complexity O(N). In this way the 
nodes not acting as a finish are determined. These 
nodes are the starting points and determine where in 
the graph reduction must start. 

• reduce_graph () 
 Scan the collection of arcs. If the starting node of an 

arc is not referenced (not pointed to) by any other arc, 
put the arc on the ordering list for further processing 
in the semantic cascade statement and reduce the 
number of relevant arcs with one (remove the arc from 
the graph). The arc remains in the graph (a collection 
initially containing all arcs) if its start node is also the 
finish node of an (other) arc. 



 

 

 
In [3] is proven that this reduction process results in an 
empty collection of arcs or in one or more cycles. The 
graph contains a cycle if the first reduction steps end with 
a non-empty collection of relevant arcs. In that case the 
reverse reduction is carried out until no further reduction 
is possible. At this point the arcs that contribute to cycles 
are found and can be reported to the user. The progress of 
the algorithm for a graph with cycles is illustrated by 
figure 8. 
 
 
 
 
                                                                                               
                                                                                                        
                     reduction        reduction 
                                                                                                    
                                             
 
 
 
 
 
 
 
                                       reverse reduction 
 
 
 

 
Figure 8. Cycle detection 

 
The time complexity of the ordering algorithm can be 
determined as follows: define the depth d of a graph as 
equal to the maximum number of arcs of any simple path 
and N as the number of arcs. The number of reduction 
steps is proportional to d and normally each iteration step 
will reduce the number of relevant arcs with N/d (the worst 
case is a reduction of only one arc). The time complexity is 
therefore O(dN). The worst-case performance is O(N2), 
also for cycle detection. The time complexity of the 
ordered recursive calculations is O(N). These estimates are 
confirmed by measurements [10]. 
 
Conclusion 
 
An efficient algorithm for recursive data processing in 
directed graphs has been presented. The technique of 
graph reduction instead of expansion is reliable because it 
can also detect cycles. It does not affect the existing 
database contents and is based on semantic query 
processing. Time complexity of recursive queries can be 
reduced to O(dN), which means that the query exe cution 
time becomes predictable. This is especially important for 
open environments as the Internet, where systems cannot 
be protected by authorization tables and where querying 
by unknown users may not lead to denial of service. 
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