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ABSTRACT 
 
Concepts of the Xplain DBMS allow the specification of 
assertions on derived data and their calculation. In case a 
term must satisfy a restricted value, the assertion specifies 
a static constraint. Such assertions can support 
management decisions based on information, derived 
from operational data. In order to deal with dependencies 
between assertions, we propose a framework for a 
correctly ordered calculation of interdependent data, using 
a dynamical calculation of rule priority. We also show 
how rule termination can be guaranteed.   
 
1. INTRODUCTION 
 
In order to facilitate decisions based on derived or 
aggregated information, such as the total costs of claims 
per insurance category, derivable data can be stored. This 
introduces the risk of inconsistency between original and 
derived data. Therefore, guaranteeing the correctness of 
derived information is an important task for a DBMS. 
 Many approaches are dealing with the management 
of derived information, but it is not possible to discuss 
them all. We only mention two dominant approaches, 
more specific information can be found via the mentioned 
literature. First, in a relational DBMS, derived 
information can be specified through materialized views, 
which is the basis for deriving efficient production rules 
dedicated to specific events (Stonebraker et al. [17]; Ceri 
and Widom [9]; Etzion [12]; Gupta et al. [14]).  
 The derivation of information can also be based on an 
Event Condition Action (ECA) model (Widom and Ceri, 
[24]; ACT-NET Consortium [1]; Paton and Díaz [15]). 
Events can lead to some database state transition that in 
case of a fulfilled condition leads to the execution of an 
appropriate action. Although events and actions might 
occur outside the database proper, we confine the 
discussion to internal database operations, in particular 
events triggering the derivation of data. Most ECA 
models have a simple procedural character [24]; they 
require an explicit specification of conditions and actions 
(or calculations) per anticipated event.  
Procedural approaches, if applied to the derivation of 
data, share the following characteristics: 
 
- An update event might trigger the calculation of 

derived information.  

- Any action can be specified, but its adequateness 
cannot be guaranteed (Appelrath et al. [2]). 

- It is possible to specify rules with a cyclic 
dependency: the termination problem. 

- The evaluation order of rules must be specified per 
event: the rule priority problem. 

 
Rule termination and rule priority are well-known issues 
in the field of active database systems [24]. Elmasri and 
Navathe [13] illustrate the first problem by an example of 
mutually dependent rules. The second one is that rule 
priority depends on the triggering event (Paton and Díaz 
[15]). However, because of the nonprocedural semantic 
concepts of Xplain, none of the diverse approaches can be 
incorporated in the Xplain DBMS [22]. It is the objective 
of this paper to present a solution for these two problems 
using the concepts of the Xplain DBMS [16, 18]. Other 
problems can only be mentioned. 
 
2. CONCEPTS OF THE XPLAIN DBMS 
 
In Xplain, data models are stored on the basis of the meta 
model shown in figure 1. It is based on the following 
definitions: 
 
type type =  name, domain, /composite/. 
type attribute = composite_type, type, kind. 
type role attribute =   [attribute], prefix. 
assert type its composite =  any attribute  

 per composite_type. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Xplain meta model for data modeling 
 
Each stored type specification consists of four elements: 
identifier, name, value domain and a Boolean indicating 
whether or not a type is composite. For example, ‘date’ is 
a base type and ‘client’ is a composite type (figure 2). 

attribute 

role attribute

type 
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Attributes define a logical connection between two types, 
which implies inherent structuring; ‘attribute its kind’ 
enables us to distinguish between aggregation and 
generalization. Generalization is indicated by an attribute 
between square brackets; see for example the definition of 
‘role attribute’, a specialization of ‘attribute’. Role 
attributes are attributes with a role, indicated by a prefix. 
The domain of an attribute can be found via ‘attribute its 
type its domain’. In our examples, domains are not shown 
because they are irrelevant for the problems to be 
discussed. Further, a term between slashes indicates a 
derived term.  
 A static restriction can be specified through a 
derived term and its calculation, possibly accompanied by 
allowed values. Examples are given after figure 2, which 
shows an abstraction hierarchy derived from the semantic 
data model presented after this figure. This model can be 
used for the registration of data about insurance policies. 
We also define this model in relational terminology: 
primary keys are given in bold and foreign keys in italics. 
We assume that policies can start every day, but have to 
be renewed every year on January 1. They always 
terminate on December 31. We ignore data associated 
with premium payments. 
 
 
 
 
 
 
 
 
 
 

 
Figure 2: An abstraction hierarchy for insurance policies 

 
We can derive figure 2 from the following relational or 
semantic specifications: 
 
Relational definition (additional rules are not shown): 
client (client#, name, address, town,  

telephone, birth-date, policy-number); 
category (cat#, name, earnings2001, costs2001, 

yield2001, excellent2001); 
policy (p#, client#,  cat#, insured-amount,  

 premium, starting-date); 
claim  (claim#,  p#, date, description,  

 claimed-amount,  reimbursement,  
 pay-date, correctness); 

 
Semantic definition: 
type client = name, address, town, telephone, 

birth_date, /policy_number/. 
type category = name, /earnings2001/, /costs2001/, 

/yield2001/, /excellent2001/. 
type policy = client, category, insured_amount, 

premium, starting_date. 

type claim = policy, date, description, 
claimed_amount, reimbursement, 
pay_date, /correctness/. 

 
Insert constraints (dynamic rules): 

init claim its reimbursement = 0. 
init claim its pay_date = 18990101.   

 
Assertions about derived information (static rules): 
{1} assert claim its correctness (true) =  

(yearf(date) = policy its yearf (starting_date) 
and date ≥  policy its starting_date). 

{2} assert category its earnings2001 = 
total policy its premium  

where yearf (starting_date) = 2001  
per category. 

{3} assert category its costs2001 = 
total claim its reimbursement 

where yearf (pay_date) = 2001 
per policy its category. 

{4} assert category its yield2001 =  
earnings2001 – costs2001. 

{5} assert maxi_yield2001 = max category its yield2001. 
{6} assert category its excellent2001 = 

(yield2001 = maximum_yield2001). 
{7} assert client its policy_number (1..*) = 

count policy per client. 
 
It is possible to translate Xplain specifications (data 
models and queries) automatically into relational 
specifications (De Boer and Ter Bekke [11]). 
 Assertions specify controlled redundancy if allowed 
values are included. Assertions specify a derived attribute 
(assertions 1-4, 6 and 7) or a single derived variable as in 
assertion 5. A dependency between derived terms occurs 
if a calculation applies a term derived by another 
assertion. We can distinguish different kinds of terms. For 
example, assertion 1 contains terms (‘claim its date’ and 
‘policy its starting_date’) as sub terms of the kind ‘attr’. 
Assertion 7 shows that a type term ‘policy’ (term with the 
kind ‘type’) acts as the subject of a set operation (‘count 
policy’). Assertion 2 demonstrates that an attribute can 
also be the subject of a set operation (‘total policy its 
premium’). Assertion 5 specifies a single variable term  
‘maxi_yield2001’ (a term of the kind ‘vari’). The 
assertions 2 and 3 are a preparation for the calculation of 
yields per category (assertion 4). 
 
3. COMPARING DECLARATIVE AND 
 PROCEDURAL RULES 
 
Assertions can support a kind of integrity, which cannot 
be enforced by data structure alone [3-8, 18-23]. The 
present paper investigates the usability of these rules for 
the maintenance of interdependent, derivable, thus 
redundant data. As an example, figure 3 shows the seven 
assertions specified before. Assertion 1 specifies a static 
constraint through a derived attribute having a particular 
value. Any update leading to a not-allowed value may not 

category client 

claim 

policy 
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be executed or has to be accompanied by another 
operation (action) leading to an allowed value. Assertion 
1 states that the date of a claim must be consistent with 
the starting date of the involved policy. Assertions 2–6 do 
not specify any constraint; they derive data about the 
results of each insurance category (category its name: 
“car”, “health”, “life”, etc.). Assertion 7 specifies that the 
number of policies per client must be at least 1. If an 
evaluation of assertion 2 or 3 leads to a value 
modification, this also requires a reevaluation of assertion 
4 (‘category its yield2001’). If this produces a modified 
value, then the assertions 5 and 6 are also triggered.  
 

                                                                                          
                      category its excellent2001 
 
                                                                                                                                            
                                                                            maxi_yield2001 
 
  
 
                                                                    category its yield2001        
    
 
 

 
              client its         category its     category its        claim its  
        policy_number   earnings2001     costs2001    correctness (true) 
 

Figure 3: Derived terms and their dependency 
 
The difference between a declarative and a procedural 
solution can be illustrated by considering a procedural 
approach mentioned in [13]. For example, dealing with 
assertion 3 (‘category its costs2001’), for each of the 
following events an adequate procedure, including an 
operation (calculation) must be specified: 
I.  Any insertion of an instance of ‘category’. 
II. Any insertion of an instance of ‘claim’. 
III. Any deletion of an instance of ‘claim’. 
IV. Any update of an instance of the attribute ‘claim its 

reimbursement’. 
V. Any update of an instance of ‘claim its policy’ (part  
 of the link from ‘claim’ via ‘policy’ to ‘category’).  
VI. Any update of an instance of ‘policy its category’ 
 (also part of this semantic link). 
VII. Any update of an instance of ‘claim its pay_date’. 
 
Apparently a number of different events can activate a 
same assertion. As an example we specify a procedure 
related to event II, the insertion of a tuple of ‘claim’: 
 
CREATE TRIGGER category_costs2001 
AFTER INSERT ON claim 
FOR EACH ROW 
WHEN (YEAR(NEW.pay-date) = 2001  
 AND NEW.p# IS NOT NULL  
 AND NEW.client# IS NOT NULL) 
UPDATE category 
SET costs2001 = costs2001 + NEW.reimbursement 
WHERE cat# IN (SELECT cat# FROM policy  
               WHERE p# IN  
              (SELECT p# FROM claim  
   WHERE claim# = NEW.claim#)); 

This illustrates the versatility and efficiency of a 
procedural approach to data derivation: an event can 
trigger any action and (update) actions could control 
redundancy. Still some problems have to be solved if 
rules have to deal with controlled data redundancy: 
 

- How to realize a correctly ordered execution of rules? 
In procedural approaches rule priority has to be 
specified explicitly, leading to overloaded 
specifications for programmers who have to design a 
possibly complex scenario for each triggering event.  

- How to guarantee rule termination? In procedural 
approaches it is possible to specify rules having a 
cyclic dependency [13, 24].  

- How to avoid superfluous calculations? For example, 
an update of an instance of ‘claim its reimbursement’ 
should only trigger an incremental recalculation of 
the involved instance of the attribute ‘category its 
costs2001’ instead of the specified set operation.  

- How to guarantee that actions produce correctly 
derived (aggregated) information? In the previous 
relational example we could specify any update 
irrespective the (derived) variable and its new value.  

 
In order to discuss rule ordering in more detail, we 
consider the required consequences of two separate events 
in the dependency graph of figure 3. The first example is 
the insertion of an instance of the composite type 
‘category’. If we initialize the priority of all assertions to 
0, this event should activate the assertions 2, 3, 4 and 6, 
because they specify derived attributes of ‘category’; they 
get priority 1. Also the intrinsic attributes of ‘category’ 
get priority 1 because other terms might depend on them.  
 The calculation of the derived terms specified by the 
assertions 2 and 3 should activate assertion 4 again 
(priority updated to 2), which has to be followed by the 
activation of assertion 5 and 6 (they get priority 3). 
Because of the dependency between assertion 6 and 5, 
assertion 6 finally should get priority 4. The assertions 1 
and 7 are not activated; their priority remains 0. 
 Another example of a trigger is the insertion of an 
instance of ‘policy’ for the year 2001. Then all attributes 
of ‘policy’ get priority 1 because they might be involved 
in a calculation. Via triggering assertion 2 (priority 2) this 
should lead to activating assertion 4 (priority 3), assertion 
5 (priority 4) and assertion 6 (priority 5). Contrary to 
inserting an instance of ‘category’, assertion 3 (priority 0) 
is not activated now. Apparently, rule priority depends on 
the triggering event and not only on the position of rules 
in a dependency graph. Section 5 presents a solution for 
dynamic rule ordering. 
 In the Xplain approach rule termination is not a 
problem: during the registration of assertions, cyclic 
dependencies between assertions can be prevented by 
enforcing that calculations only apply constants or 
previously registered terms. If a derived term acts as a sub 
term in the calculation of another term, a dependency 
between derived terms (thus assertions) exists and their 
evaluation order is determined by this dependency. 

1 2 3 

4 

5 

6 

7 
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Section 4 presents a meta model for the registration of 
assertions, (derived) terms and their dependency. 
 In principle, actions associated with assertions, must 
lead to derived terms with a correct value.  
For example, the following derived attribute initially gets 
an unallowable value 0:   
 
{7} assert client its policy_number (1..*) = 
    count policy per client.  
 
Here the required action is the registration of a first policy 
for each new client. Actions can be predefined and must 
restore derivable terms into an allowed value. Another 
solution is to inform a user about a rule violation and to 
enable the user to specify an action. However, a solution 
for the adequateness of actions cannot be dealt with here.  
 
4. A META MODEL FOR ASSERTIONS  
 AND TERMS 
 
Before introducing a meta model for assertions, (derived) 
terms and their dependencies, we mention the possible 
categories of assertions and terms: 
 
I. Assertions about attributes derived without a set 

operation, an example is assertion 4. 
II. Assertions about single variables derived without a 

set operation. For example:  assert year1 = 2001. 
III. Assertions about attributes derived with a set 

operation, an example is assertion 3. 
IV. Assertions about single variables derived with a set 

operation. For example, assertion 8: 
 assert claimnumber2001 =  
  count claim where yearf (date) = 2001. 
 
The variable ‘claimnumber2001’ depends on the involved 
attribute term ‘claim its date’ and the type term ‘claim’ as 
well. The subject of a set operation can be a composite 
type (a type term ‘claim’ as in assertion 8) or an attribute 
term (‘claim its reimbursement’ in assertion 3).  
 Further, a path of attributes may be specified instead 
of a single attribute. An example is assertion 9 deriving 
the number of claimed insurance categories per client; 
two attribute terms are part of the subject: both ‘claim its 
policy’ and ‘policy its category’. The other involved 
attribute term ‘policy its client’ is part of the path from 
‘claim’ to ‘client’ via ‘policy’ (in a ‘per’ construct): 
 
{9} assert client its number of claimed categories = 
  count claim its policy its category  
  per policy its client. 
 
We propose the following meta model (figure 4) for the 
registration of assertions, terms and their dependency. 
This meta model is based on the following definitions: 
 
type type =  name, domain, /composite/,  
    /sequence_number/. 
type attribute =  composite_type, type, kind. 
type role attribute = [attribute], prefix. 

type range =  preceding_range, type, 
    minimum_value, 
    maximum_value, /correct/, 
    /successor_number/. 
type assertion =  [assert_term], 
    calculation_expression, 
    /correct/. 
type term =  expression, kind,  
    /derived/,  
    /a_number/, /t_number/,  
    /v_number/, /complete/. 
type attribute term = [term], [spec_attribute], 
    /correct/.  
type type term =  [term], [type], /correct/. 
type variable =  [term], value, /correct/. 
type dependency = term, involved_term, /correct/. 
type allowed value = term, range, /correct/. 
 
Moreover, we must also apply the following rules: 
 
{10} assert range its correct (true) =  
  (maximum_value ≥  minimum_value 
   and (preceding_range = 0 
   or (not preceding_range = 0  
   and type = preceding_range its type  
   and minimum_value > 
   preceding_range its maximum_value))). 
{11} assert range its successor_number (0..1) = 
   count range per preceding_range. 
{12} assert type its sequence_number (0..1) = 
   count range where preceding_range = 0 
   per type. 
{13} assert type its composite = any attribute 
    per composite_type. 
{14} assert term its derived =  
   any assertion per assert_term. 
{15} assert attribute term its correct (true) =  
   (term its kind = “attr”). 
{16} assert type term its correct (true) =  
   (term its kind = “type” and type its composite). 
{17} assert variable its correct (true) = 
   (term its kind = “vari”). 
{18} assert dependency its correct (true) =   
   (term its derived and not term = involved_term). 
{19} assert allowed value its correct (true) = 
   (term its derived). 
{20} assert term its a_number (0..1) =  
  count attribute term per term. 
{21} assert term its t_number (0..1) = 
  count type term per term. 
{22} assert term its v_number (0..1) = 
  count variable per term. 
{23} assert term its complete (true) =  
  (kind = “attr” and a_number =1   
  or kind = “type” and t_number =1 
  or kind = “vari” and v_number = 1). 
{24} assert assertion its correct (true) =  
  (assert_term its kind = “attr”  
   or assert_term its kind = “vari”). 
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Figure 4: A meta model for assertions, (derived) terms and their dependency 
 
By using different prefixes between brackets, ‘attribute 
term’ and ‘role attribute’ define overlapping 
specializations of ‘attribute’. The concept of ‘range’ 
allows the registration of value ranges or single values. In 
the last case the minimum equals the maximum value. In 
case of a value range without a preceding range we can 
apply: ‘range its preceding_range = 0’.  
Assertion 10 has to enforce that a range is consistent with 
the preceding range, whereas assertion 11 has to enforce 
that a sequence of value ranges is registered. Using 
assertion 12, a type has at most one sequence of value 
ranges. Using assertion 14, intrinsic and derived terms can 
be distinguished. Assertions 15-17 are dealing with the 
correctness of diverse kinds of ‘term’. The application of 
assertion 18 guarantees that direct recursive dependencies 
cannot be specified and that ‘dependency’ really refers to 
a derived term. Assertion 19 guarantees that instances of 
‘allowed value’ refer to a derived term. Assertions 20-23 
are dealing with the completeness of term specifications. 
In the case of ‘term its kind = ”attr”’ it is not necessary to 
require ‘term its t_number = 0’ because the meta model 
already specifies disjoint specialization: a term may not 
be both a type term and an attribute term. Finally, 
assertion 24 has to enforce that an assertion either 
specifies a derived variable or a derived attribute. 
 The proposed meta model has to be used during the 
registration and application of assertions. A complete 
parsing is not required because constants and operators do 
not affect the logical dependency between terms. This 
pre-parsing has to perceive, distinguish and register 
derived terms, involved terms and their dependencies. 
Calculations must apply previously defined terms or 
constants in order to prevent cyclic dependencies between 
assertions.  
 A brute-force calculation of a derived term could be 
based on a slight modification of the existing parser 
(Cheung [10]). A more efficient solution seems possible, 
but cannot be discussed here. A solution for ordering the 
evaluation of triggered assertions will be discussed in 
section 5. 
 

5.  DYNAMIC RULE ORDERING 
 
Xplain concepts do not allow us to modify the identifier 
of an instance of a composite type. A triggering event 
together with the required calculation and possibly some 
suitable action must be treated as a single transaction. 
Consequently, the DBMS must apply immediate coupling 
between event, calculation and action, even when many 
assertions are triggered by a single event. Furthermore, 
because of the required transaction consistency, a DBMS 
has to register each data operation and its effects in log 
files before writing to the database. When inserting or 
deleting an instance of a composite type, this instance and 
its composite type must be registered. In the case of 
modifying an attribute instance, this instance, its new 
value and the involved attribute (if using the deferred 
update method) must be registered. Using this logging, a 
correct order for the evaluation of rules can be determined 
for each possible kind of triggering update event: 
- The insertion of an instance of a composite type. 
-  The deletion of an instance of a composite type, 

acting in the subject of a set operation. 
-  The modification of an instance of an attribute, 

acting as an operand in the derivation of a term. 
 
1. Inserting an instance of a composite type ‘T’. 
Two situations can be distinguished. First, type ‘T’ is the 
composite type of a derived attribute. An example is 
‘client’ in assertion 9: ‘client its number of claimed 
categories’. Secondly, type ‘T’ is a type term, acting in 
the subject of a set operation. An example is the type 
‘claim’ in the calculation specified by assertion 9:  
 
assert client its number of claimed categories = 
   count claim its policy its category  
   per policy its client.  
 
Not each reevaluation of a triggered assertion really 
triggers the evaluation of other assertions referring to the 
triggered assertion. For example, the insertion of an 
instance of ‘claim’ having reimbursement 0, triggers a 

     variable  

      attribute 
       term

dependency attribute 

type 

allowed  
value

range 

assertion 
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recalculation of the involved instance of ‘category its 
costs2001’ (assertion 3), but this recalculation does not 
change its value. Consequently, assertion 4 should not be 
triggered. Contrary to that, a value modification of an 
instance of ‘claim its reimbursement’ must trigger the 
recalculation of the involved instance of ‘category its 
costs2001’ (assertion 3), which leads to a new value and 
therefore also triggers the recalculation of the involved 
instance of ‘category its yield2001’ (assertion 4). In order 
to deal with this value-modification dependent trigger 
propagation, we introduce a Boolean property ‘term its 
modified’, which enables us to register whether the value 
of a term has been changed.  
 Xplain also allows the specification of constants, for 
example:  assert pi = 3.14.  We consider a constant as a 
special single variable, being independent of other terms. 
Independent terms with a constant value must have 
priority 1 because other terms might depend on them. The 
same applies to derived attributes with a constant value, 
for example:  assert policy its  currency_ratio  = 0.899. 
 We describe the required operations in terms of the 
declarative language of Xplain in order to illustrate that 
these operations must respect the structure of the meta 
model, but the described operations should be considered 
as run-time code:  
 
1. extend term with priority = 0. {initialization} 
2. extend term with inserted =   
  any attribute term 
   where attribute its composite_type = “T” 
  per term. 
3. extend term with T_related =   
  any type term where type = “T”  
  per term.    {a term specified after a set function} 
4. extend term with independent = 
  nil dependency  per term. 
5. extend term with first =  
  (inserted or T_related or independent) . 
6. update term its priority = 1 where first.  
7. extend term with second = 
  any dependency  
   where involved_term its priority = 1  
  per term.  
8. update term its priority = 2 where second. 
          {also determine ‘term its modified’} 
9. extend term with third = 
  any dependency  
   where involved_term its priority = 2  
   and involved_term its modified 
  per term. 
10. update term its priority = 3 where third. 
11. extend term with fourth = 
  any dependency  
   where involved_term its priority = 3  
   and involved_term its modified 
  per term. 
12. update term its priority = 4 where fourth. {etc.} 
 

As an illustration we consider the insertion of an instance 
of the composite type ‘category’. After the operations 1-4 
the terms derived by the assertions 1-7 (figure 3) still have 
priority 0. After operation 5-6 the terms derived by the 
assertions 2, 3, 4 and 6, which are derived attributes of 
‘category’, simply get priority 1, whereas after the steps 
7-8 the term derived by assertion 4 gets priority 2. The 
operations 9-10 lead to priority 3 for the terms derived by 
the assertions 5 and 6. Finally, the operations 11-12 
update the priority of ‘category its excellent2001’ 
(assertion 6) to 4. The DBMS can build a list of triggered 
assertions for each of the calculated priorities and the 
derived terms have to be calculated using a correct 
ordering of these lists.  
 Another example of a trigger is the insertion of an 
instance of ‘policy’ with a date in 2001, which initially 
triggers the assertions 2 and 7, and later, indirectly, the 
assertions 4-6. But, contrary to the insertion of an instance 
of ‘category’, assertion 3 is not triggered now. Apparently 
rule priority depends on the actual triggering event and 
not only on the relative position of a rule in the 
dependency graph. 
 
2. Deleting an instance of a composite type ‘T’ acting in 
    the subject of a set operation. 
The deletion of an instance of a composite type ‘T’ not 
acting in the subject of a set operation cannot modify the 
value of any derived term. For example: the deletion of an 
instance of ‘client’ does not affect any derived term 
specified by the assertions 1-7. Only two possible 
situations must be considered in the case of a deletion: 
I. Type ‘T’ is the subject of a set operation. For 

example, ‘claim’ in:  
 assert total_claimnumber2001 =  
  count claim where yearf (date) = 2001. 
II.  Type ‘T’ is part of the subject of a set operation. For 

example, ‘claim’ in:  
 assert client its number of claimed categories = 
  count claim its policy its category  
  per policy its client. 
 
In case of a deletion it is not relevant whether or not the 
type term is subject or is part of a subject. The deletion of 
a type term does not always lead to a value modification 
of a derived term. An example is the deletion of a claim 
not having a date in 2001. In general, we must determine 
which derived terms are depending on a type term 
involved in a deletion: 
 
1. extend term with priority = 0. 
2. extend term with independent =  
  nil dependency per term. 
3. extend term with deleted = 
  any type term where type = “T” per term. 
4. extend term with first = 
  any dependency where involved_term its deleted  
  per term. 
5. update term its priority = 1  
  where first or (independent and not deleted).  
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6. extend term with second = 
  any dependency  
   where involved_term its priority = 1 
   and involved_term its modified  
  per term. 
7. update term its priority = 2 where second.    {etc.} 
 
Because of the occurring deletion, the predicate 
‘involved_term its modified’ is superfluous in step 4, but 
this predicate is still relevant after step 5. As an example 
we consider the deletion of a claim in 2001. Initially, all 
derived terms (assertions 1-7) have priority 0. After step 5 
only ‘category its costs2001’ (assertion 3) gets priority 1. 
If the value of the involved instance of ‘category its 
costs2001’ is changed then the following step is an update 
of the priority of the term specified by assertion 4, etc.  
 
3. Modifying an instance of attribute ‘A’, acting as a sub  
    term in a calculation. 
An example is the modification of an instance of the 
attribute ‘claim its reimbursement’. We only describe the 
first seven steps: 
1. extend term with priority = 0. 
2. extend term with independent =  
  nil dependency per term. 
3. extend term with A_related =  
  any attribute term where attribute = “A”  
  per term. 
4. extend term with first = (A_related or independent). 
5. update term its priority = 1 where first.  
6. extend term with second = 
  any dependency 
   where involved_term its priority = 1  
   and involved_term its modified  
  per term. 
7. update term its priority = 2 where second. {etc.} 
 
A complication is that in case of a value violation a 
required action might act as a trigger. An example is the 
required insertion of at least one instance of ‘policy’ 
associated with the insertion of a new client. This triggers 
assertion 7:  
 
assert client its policy_number (1..*) = count policy 
           per client. 
 
The required insertion of an associated instance of 
‘policy’ for the year 2001 triggers assertion 2, which in its 
turn activates assertion 4, and so on.  
 
6. DISCUSSION 
 
Procedural ECA approaches to the maintenance of 
derived information are versatile and efficient because 
actions and calculations can be dedicated to specific 
events. They allow - but do not guarantee - adequateness 
of corrective actions because they do not support a 
predefinition of allowed values for derived data, which 
impairs a comparison between calculated and allowed 

values. Furthermore, rule priority must be specified for 
each anticipated triggering event because rule priority 
depends on the event, which could possibly lead to 
complex scenarios.  
 Using the proposed meta model, it is not necessary 
to specify a procedure for each anticipated event because 
the set of triggered assertions can be inferred from the 
event. The registered dependencies between terms, 
enables a DBMS to calculate term priority per event and 
to maintain the consistency of the set of interdependent 
assertions in case of deleting an assertion referenced by 
another assertion.  
 Moreover, we can prevent cyclic dependencies 
between derived terms if we require that assertions may 
only apply constants or previously registered terms. Using 
assertions, the effect of an action on a derived value can 
be compared with the allowed value(s), which supports 
predefined actions and user defined actions as well.  
 Still some problems must be solved in Xplain: how to 
specify actions, how to guarantee adequateness of actions 
and how to infer efficient calculations from set operations 
and events. 
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