
 253

Proceedings of the IASTED International Conference
INTELLIGENT SYSTEMS AND CONTROL
November 19-22, 2001, Clearwater (Tampa), Florida, USA

MAINTAINING DERIVED INFORMATION USING
DYNAMIC RULE ORDERING

J.A. BAKKER and J.H. TER BEKKE

Faculty of Information Technology and Systems, Delft University of Technology,
P.O. Box 356, 2600 AJ Delft, The Netherlands, {J.A.Bakker, J.H.terBekke}@its.tudelft.nl

ABSTRACT

Concepts of the Xplain DBMS allow the specification of
assertions on derived data and their calculation. In case a
term must satisfy a restricted value, the assertion specifies
a static constraint. Such assertions can support
management decisions based on information, derived
from operational data. In order to deal with dependencies
between assertions, we propose a framework for a
correctly ordered calculation of interdependent data, using
a dynamical calculation of rule priority. We also show
how rule termination can be guaranteed.

1. INTRODUCTION

In order to facilitate decisions based on derived or
aggregated information, such as the total costs of claims
per insurance category, derivable data can be stored. This
introduces the risk of inconsistency between original and
derived data. Therefore, guaranteeing the correctness of
derived information is an important task for a DBMS.
 Many approaches are dealing with the management
of derived information, but it is not possible to discuss
them all. We only mention two dominant approaches,
more specific information can be found via the mentioned
literature. First, in a relational DBMS, derived
information can be specified through materialized views,
which is the basis for deriving efficient production rules
dedicated to specific events (Stonebraker et al. [17]; Ceri
and Widom [9]; Etzion [12]; Gupta et al. [14]).
 The derivation of information can also be based on an
Event Condition Action (ECA) model (Widom and Ceri,
[24]; ACT-NET Consortium [1]; Paton and Díaz [15]).
Events can lead to some database state transition that in
case of a fulfilled condition leads to the execution of an
appropriate action. Although events and actions might
occur outside the database proper, we confine the
discussion to internal database operations, in particular
events triggering the derivation of data. Most ECA
models have a simple procedural character [24]; they
require an explicit specification of conditions and actions
(or calculations) per anticipated event.
Procedural approaches, if applied to the derivation of
data, share the following characteristics:

- An update event might trigger the calculation of

derived information.

- Any action can be specified, but its adequateness
cannot be guaranteed (Appelrath et al. [2]).

- It is possible to specify rules with a cyclic
dependency: the termination problem.

- The evaluation order of rules must be specified per
event: the rule priority problem.

Rule termination and rule priority are well-known issues
in the field of active database systems [24]. Elmasri and
Navathe [13] illustrate the first problem by an example of
mutually dependent rules. The second one is that rule
priority depends on the triggering event (Paton and Díaz
[15]). However, because of the nonprocedural semantic
concepts of Xplain, none of the diverse approaches can be
incorporated in the Xplain DBMS [22]. It is the objective
of this paper to present a solution for these two problems
using the concepts of the Xplain DBMS [16, 18]. Other
problems can only be mentioned.

2. CONCEPTS OF THE XPLAIN DBMS

In Xplain, data models are stored on the basis of the meta
model shown in figure 1. It is based on the following
definitions:

type type = name, domain, /composite/.
type attribute = composite_type, type, kind.
type role attribute = [attribute], prefix.
assert type its composite = any attribute

 per composite_type.

Figure 1: Xplain meta model for data modeling

Each stored type specification consists of four elements:
identifier, name, value domain and a Boolean indicating
whether or not a type is composite. For example, ‘date’ is
a base type and ‘client’ is a composite type (figure 2).

attribute

role attribute

type

 254

Attributes define a logical connection between two types,
which implies inherent structuring; ‘attribute its kind’
enables us to distinguish between aggregation and
generalization. Generalization is indicated by an attribute
between square brackets; see for example the definition of
‘role attribute’, a specialization of ‘attribute’. Role
attributes are attributes with a role, indicated by a prefix.
The domain of an attribute can be found via ‘attribute its
type its domain’. In our examples, domains are not shown
because they are irrelevant for the problems to be
discussed. Further, a term between slashes indicates a
derived term.
 A static restriction can be specified through a
derived term and its calculation, possibly accompanied by
allowed values. Examples are given after figure 2, which
shows an abstraction hierarchy derived from the semantic
data model presented after this figure. This model can be
used for the registration of data about insurance policies.
We also define this model in relational terminology:
primary keys are given in bold and foreign keys in italics.
We assume that policies can start every day, but have to
be renewed every year on January 1. They always
terminate on December 31. We ignore data associated
with premium payments.

Figure 2: An abstraction hierarchy for insurance policies

We can derive figure 2 from the following relational or
semantic specifications:

Relational definition (additional rules are not shown):
client (client#, name, address, town,

telephone, birth-date, policy-number);
category (cat#, name, earnings2001, costs2001,

yield2001, excellent2001);
policy (p#, client#, cat#, insured-amount,

 premium, starting-date);
claim (claim#, p#, date, description,

 claimed-amount, reimbursement,
 pay-date, correctness);

Semantic definition:
type client = name, address, town, telephone,

birth_date, /policy_number/.
type category = name, /earnings2001/, /costs2001/,

/yield2001/, /excellent2001/.
type policy = client, category, insured_amount,

premium, starting_date.

type claim = policy, date, description,
claimed_amount, reimbursement,
pay_date, /correctness/.

Insert constraints (dynamic rules):

init claim its reimbursement = 0.
init claim its pay_date = 18990101.

Assertions about derived information (static rules):
{1} assert claim its correctness (true) =

(yearf(date) = policy its yearf (starting_date)
and date ≥ policy its starting_date).

{2} assert category its earnings2001 =
total policy its premium

where yearf (starting_date) = 2001
per category.

{3} assert category its costs2001 =
total claim its reimbursement

where yearf (pay_date) = 2001
per policy its category.

{4} assert category its yield2001 =
earnings2001 – costs2001.

{5} assert maxi_yield2001 = max category its yield2001.
{6} assert category its excellent2001 =

(yield2001 = maximum_yield2001).
{7} assert client its policy_number (1..*) =

count policy per client.

It is possible to translate Xplain specifications (data
models and queries) automatically into relational
specifications (De Boer and Ter Bekke [11]).
 Assertions specify controlled redundancy if allowed
values are included. Assertions specify a derived attribute
(assertions 1-4, 6 and 7) or a single derived variable as in
assertion 5. A dependency between derived terms occurs
if a calculation applies a term derived by another
assertion. We can distinguish different kinds of terms. For
example, assertion 1 contains terms (‘claim its date’ and
‘policy its starting_date’) as sub terms of the kind ‘attr’.
Assertion 7 shows that a type term ‘policy’ (term with the
kind ‘type’) acts as the subject of a set operation (‘count
policy’). Assertion 2 demonstrates that an attribute can
also be the subject of a set operation (‘total policy its
premium’). Assertion 5 specifies a single variable term
‘maxi_yield2001’ (a term of the kind ‘vari’). The
assertions 2 and 3 are a preparation for the calculation of
yields per category (assertion 4).

3. COMPARING DECLARATIVE AND
 PROCEDURAL RULES

Assertions can support a kind of integrity, which cannot
be enforced by data structure alone [3-8, 18-23]. The
present paper investigates the usability of these rules for
the maintenance of interdependent, derivable, thus
redundant data. As an example, figure 3 shows the seven
assertions specified before. Assertion 1 specifies a static
constraint through a derived attribute having a particular
value. Any update leading to a not-allowed value may not

category client

claim

policy

 255

be executed or has to be accompanied by another
operation (action) leading to an allowed value. Assertion
1 states that the date of a claim must be consistent with
the starting date of the involved policy. Assertions 2–6 do
not specify any constraint; they derive data about the
results of each insurance category (category its name:
“car”, “health”, “life”, etc.). Assertion 7 specifies that the
number of policies per client must be at least 1. If an
evaluation of assertion 2 or 3 leads to a value
modification, this also requires a reevaluation of assertion
4 (‘category its yield2001’). If this produces a modified
value, then the assertions 5 and 6 are also triggered.

 category its excellent2001

 maxi_yield2001

 category its yield2001

 client its category its category its claim its
 policy_number earnings2001 costs2001 correctness (true)

Figure 3: Derived terms and their dependency

The difference between a declarative and a procedural
solution can be illustrated by considering a procedural
approach mentioned in [13]. For example, dealing with
assertion 3 (‘category its costs2001’), for each of the
following events an adequate procedure, including an
operation (calculation) must be specified:
I. Any insertion of an instance of ‘category’.
II. Any insertion of an instance of ‘claim’.
III. Any deletion of an instance of ‘claim’.
IV. Any update of an instance of the attribute ‘claim its

reimbursement’.
V. Any update of an instance of ‘claim its policy’ (part
 of the link from ‘claim’ via ‘policy’ to ‘category’).
VI. Any update of an instance of ‘policy its category’
 (also part of this semantic link).
VII. Any update of an instance of ‘claim its pay_date’.

Apparently a number of different events can activate a
same assertion. As an example we specify a procedure
related to event II, the insertion of a tuple of ‘claim’:

CREATE TRIGGER category_costs2001
AFTER INSERT ON claim
FOR EACH ROW
WHEN (YEAR(NEW.pay-date) = 2001
 AND NEW.p# IS NOT NULL
 AND NEW.client# IS NOT NULL)
UPDATE category
SET costs2001 = costs2001 + NEW.reimbursement
WHERE cat# IN (SELECT cat# FROM policy
 WHERE p# IN
 (SELECT p# FROM claim
 WHERE claim# = NEW.claim#));

This illustrates the versatility and efficiency of a
procedural approach to data derivation: an event can
trigger any action and (update) actions could control
redundancy. Still some problems have to be solved if
rules have to deal with controlled data redundancy:

- How to realize a correctly ordered execution of rules?
In procedural approaches rule priority has to be
specified explicitly, leading to overloaded
specifications for programmers who have to design a
possibly complex scenario for each triggering event.

- How to guarantee rule termination? In procedural
approaches it is possible to specify rules having a
cyclic dependency [13, 24].

- How to avoid superfluous calculations? For example,
an update of an instance of ‘claim its reimbursement’
should only trigger an incremental recalculation of
the involved instance of the attribute ‘category its
costs2001’ instead of the specified set operation.

- How to guarantee that actions produce correctly
derived (aggregated) information? In the previous
relational example we could specify any update
irrespective the (derived) variable and its new value.

In order to discuss rule ordering in more detail, we
consider the required consequences of two separate events
in the dependency graph of figure 3. The first example is
the insertion of an instance of the composite type
‘category’. If we initialize the priority of all assertions to
0, this event should activate the assertions 2, 3, 4 and 6,
because they specify derived attributes of ‘category’; they
get priority 1. Also the intrinsic attributes of ‘category’
get priority 1 because other terms might depend on them.
 The calculation of the derived terms specified by the
assertions 2 and 3 should activate assertion 4 again
(priority updated to 2), which has to be followed by the
activation of assertion 5 and 6 (they get priority 3).
Because of the dependency between assertion 6 and 5,
assertion 6 finally should get priority 4. The assertions 1
and 7 are not activated; their priority remains 0.
 Another example of a trigger is the insertion of an
instance of ‘policy’ for the year 2001. Then all attributes
of ‘policy’ get priority 1 because they might be involved
in a calculation. Via triggering assertion 2 (priority 2) this
should lead to activating assertion 4 (priority 3), assertion
5 (priority 4) and assertion 6 (priority 5). Contrary to
inserting an instance of ‘category’, assertion 3 (priority 0)
is not activated now. Apparently, rule priority depends on
the triggering event and not only on the position of rules
in a dependency graph. Section 5 presents a solution for
dynamic rule ordering.
 In the Xplain approach rule termination is not a
problem: during the registration of assertions, cyclic
dependencies between assertions can be prevented by
enforcing that calculations only apply constants or
previously registered terms. If a derived term acts as a sub
term in the calculation of another term, a dependency
between derived terms (thus assertions) exists and their
evaluation order is determined by this dependency.

1 2 3

4

5

6

7

 256

Section 4 presents a meta model for the registration of
assertions, (derived) terms and their dependency.
 In principle, actions associated with assertions, must
lead to derived terms with a correct value.
For example, the following derived attribute initially gets
an unallowable value 0:

{7} assert client its policy_number (1..*) =
 count policy per client.

Here the required action is the registration of a first policy
for each new client. Actions can be predefined and must
restore derivable terms into an allowed value. Another
solution is to inform a user about a rule violation and to
enable the user to specify an action. However, a solution
for the adequateness of actions cannot be dealt with here.

4. A META MODEL FOR ASSERTIONS
 AND TERMS

Before introducing a meta model for assertions, (derived)
terms and their dependencies, we mention the possible
categories of assertions and terms:

I. Assertions about attributes derived without a set

operation, an example is assertion 4.
II. Assertions about single variables derived without a

set operation. For example: assert year1 = 2001.
III. Assertions about attributes derived with a set

operation, an example is assertion 3.
IV. Assertions about single variables derived with a set

operation. For example, assertion 8:
 assert claimnumber2001 =
 count claim where yearf (date) = 2001.

The variable ‘claimnumber2001’ depends on the involved
attribute term ‘claim its date’ and the type term ‘claim’ as
well. The subject of a set operation can be a composite
type (a type term ‘claim’ as in assertion 8) or an attribute
term (‘claim its reimbursement’ in assertion 3).
 Further, a path of attributes may be specified instead
of a single attribute. An example is assertion 9 deriving
the number of claimed insurance categories per client;
two attribute terms are part of the subject: both ‘claim its
policy’ and ‘policy its category’. The other involved
attribute term ‘policy its client’ is part of the path from
‘claim’ to ‘client’ via ‘policy’ (in a ‘per’ construct):

{9} assert client its number of claimed categories =
 count claim its policy its category
 per policy its client.

We propose the following meta model (figure 4) for the
registration of assertions, terms and their dependency.
This meta model is based on the following definitions:

type type = name, domain, /composite/,
 /sequence_number/.
type attribute = composite_type, type, kind.
type role attribute = [attribute], prefix.

type range = preceding_range, type,
 minimum_value,
 maximum_value, /correct/,
 /successor_number/.
type assertion = [assert_term],
 calculation_expression,
 /correct/.
type term = expression, kind,
 /derived/,
 /a_number/, /t_number/,
 /v_number/, /complete/.
type attribute term = [term], [spec_attribute],
 /correct/.
type type term = [term], [type], /correct/.
type variable = [term], value, /correct/.
type dependency = term, involved_term, /correct/.
type allowed value = term, range, /correct/.

Moreover, we must also apply the following rules:

{10} assert range its correct (true) =
 (maximum_value ≥ minimum_value
 and (preceding_range = 0
 or (not preceding_range = 0
 and type = preceding_range its type
 and minimum_value >
 preceding_range its maximum_value))).
{11} assert range its successor_number (0..1) =
 count range per preceding_range.
{12} assert type its sequence_number (0..1) =
 count range where preceding_range = 0
 per type.
{13} assert type its composite = any attribute
 per composite_type.
{14} assert term its derived =
 any assertion per assert_term.
{15} assert attribute term its correct (true) =
 (term its kind = “attr”).
{16} assert type term its correct (true) =
 (term its kind = “type” and type its composite).
{17} assert variable its correct (true) =
 (term its kind = “vari”).
{18} assert dependency its correct (true) =
 (term its derived and not term = involved_term).
{19} assert allowed value its correct (true) =
 (term its derived).
{20} assert term its a_number (0..1) =
 count attribute term per term.
{21} assert term its t_number (0..1) =
 count type term per term.
{22} assert term its v_number (0..1) =
 count variable per term.
{23} assert term its complete (true) =
 (kind = “attr” and a_number =1
 or kind = “type” and t_number =1
 or kind = “vari” and v_number = 1).
{24} assert assertion its correct (true) =
 (assert_term its kind = “attr”
 or assert_term its kind = “vari”).

 257

Figure 4: A meta model for assertions, (derived) terms and their dependency

By using different prefixes between brackets, ‘attribute
term’ and ‘role attribute’ define overlapping
specializations of ‘attribute’. The concept of ‘range’
allows the registration of value ranges or single values. In
the last case the minimum equals the maximum value. In
case of a value range without a preceding range we can
apply: ‘range its preceding_range = 0’.
Assertion 10 has to enforce that a range is consistent with
the preceding range, whereas assertion 11 has to enforce
that a sequence of value ranges is registered. Using
assertion 12, a type has at most one sequence of value
ranges. Using assertion 14, intrinsic and derived terms can
be distinguished. Assertions 15-17 are dealing with the
correctness of diverse kinds of ‘term’. The application of
assertion 18 guarantees that direct recursive dependencies
cannot be specified and that ‘dependency’ really refers to
a derived term. Assertion 19 guarantees that instances of
‘allowed value’ refer to a derived term. Assertions 20-23
are dealing with the completeness of term specifications.
In the case of ‘term its kind = ”attr”’ it is not necessary to
require ‘term its t_number = 0’ because the meta model
already specifies disjoint specialization: a term may not
be both a type term and an attribute term. Finally,
assertion 24 has to enforce that an assertion either
specifies a derived variable or a derived attribute.
 The proposed meta model has to be used during the
registration and application of assertions. A complete
parsing is not required because constants and operators do
not affect the logical dependency between terms. This
pre-parsing has to perceive, distinguish and register
derived terms, involved terms and their dependencies.
Calculations must apply previously defined terms or
constants in order to prevent cyclic dependencies between
assertions.
 A brute-force calculation of a derived term could be
based on a slight modification of the existing parser
(Cheung [10]). A more efficient solution seems possible,
but cannot be discussed here. A solution for ordering the
evaluation of triggered assertions will be discussed in
section 5.

5. DYNAMIC RULE ORDERING

Xplain concepts do not allow us to modify the identifier
of an instance of a composite type. A triggering event
together with the required calculation and possibly some
suitable action must be treated as a single transaction.
Consequently, the DBMS must apply immediate coupling
between event, calculation and action, even when many
assertions are triggered by a single event. Furthermore,
because of the required transaction consistency, a DBMS
has to register each data operation and its effects in log
files before writing to the database. When inserting or
deleting an instance of a composite type, this instance and
its composite type must be registered. In the case of
modifying an attribute instance, this instance, its new
value and the involved attribute (if using the deferred
update method) must be registered. Using this logging, a
correct order for the evaluation of rules can be determined
for each possible kind of triggering update event:
- The insertion of an instance of a composite type.
- The deletion of an instance of a composite type,

acting in the subject of a set operation.
- The modification of an instance of an attribute,

acting as an operand in the derivation of a term.

1. Inserting an instance of a composite type ‘T’.
Two situations can be distinguished. First, type ‘T’ is the
composite type of a derived attribute. An example is
‘client’ in assertion 9: ‘client its number of claimed
categories’. Secondly, type ‘T’ is a type term, acting in
the subject of a set operation. An example is the type
‘claim’ in the calculation specified by assertion 9:

assert client its number of claimed categories =
 count claim its policy its category
 per policy its client.

Not each reevaluation of a triggered assertion really
triggers the evaluation of other assertions referring to the
triggered assertion. For example, the insertion of an
instance of ‘claim’ having reimbursement 0, triggers a

 variable

 attribute
 term

dependency attribute

type

allowed
value

range

assertion

term

type term

role
attribute

 258

recalculation of the involved instance of ‘category its
costs2001’ (assertion 3), but this recalculation does not
change its value. Consequently, assertion 4 should not be
triggered. Contrary to that, a value modification of an
instance of ‘claim its reimbursement’ must trigger the
recalculation of the involved instance of ‘category its
costs2001’ (assertion 3), which leads to a new value and
therefore also triggers the recalculation of the involved
instance of ‘category its yield2001’ (assertion 4). In order
to deal with this value-modification dependent trigger
propagation, we introduce a Boolean property ‘term its
modified’, which enables us to register whether the value
of a term has been changed.
 Xplain also allows the specification of constants, for
example: assert pi = 3.14. We consider a constant as a
special single variable, being independent of other terms.
Independent terms with a constant value must have
priority 1 because other terms might depend on them. The
same applies to derived attributes with a constant value,
for example: assert policy its currency_ratio = 0.899.
 We describe the required operations in terms of the
declarative language of Xplain in order to illustrate that
these operations must respect the structure of the meta
model, but the described operations should be considered
as run-time code:

1. extend term with priority = 0. {initialization}
2. extend term with inserted =
 any attribute term
 where attribute its composite_type = “T”
 per term.
3. extend term with T_related =
 any type term where type = “T”
 per term. {a term specified after a set function}
4. extend term with independent =
 nil dependency per term.
5. extend term with first =
 (inserted or T_related or independent) .
6. update term its priority = 1 where first.
7. extend term with second =
 any dependency
 where involved_term its priority = 1
 per term.
8. update term its priority = 2 where second.
 {also determine ‘term its modified’}
9. extend term with third =
 any dependency
 where involved_term its priority = 2
 and involved_term its modified
 per term.
10. update term its priority = 3 where third.
11. extend term with fourth =
 any dependency
 where involved_term its priority = 3
 and involved_term its modified
 per term.
12. update term its priority = 4 where fourth. {etc.}

As an illustration we consider the insertion of an instance
of the composite type ‘category’. After the operations 1-4
the terms derived by the assertions 1-7 (figure 3) still have
priority 0. After operation 5-6 the terms derived by the
assertions 2, 3, 4 and 6, which are derived attributes of
‘category’, simply get priority 1, whereas after the steps
7-8 the term derived by assertion 4 gets priority 2. The
operations 9-10 lead to priority 3 for the terms derived by
the assertions 5 and 6. Finally, the operations 11-12
update the priority of ‘category its excellent2001’
(assertion 6) to 4. The DBMS can build a list of triggered
assertions for each of the calculated priorities and the
derived terms have to be calculated using a correct
ordering of these lists.
 Another example of a trigger is the insertion of an
instance of ‘policy’ with a date in 2001, which initially
triggers the assertions 2 and 7, and later, indirectly, the
assertions 4-6. But, contrary to the insertion of an instance
of ‘category’, assertion 3 is not triggered now. Apparently
rule priority depends on the actual triggering event and
not only on the relative position of a rule in the
dependency graph.

2. Deleting an instance of a composite type ‘T’ acting in
 the subject of a set operation.
The deletion of an instance of a composite type ‘T’ not
acting in the subject of a set operation cannot modify the
value of any derived term. For example: the deletion of an
instance of ‘client’ does not affect any derived term
specified by the assertions 1-7. Only two possible
situations must be considered in the case of a deletion:
I. Type ‘T’ is the subject of a set operation. For

example, ‘claim’ in:
 assert total_claimnumber2001 =
 count claim where yearf (date) = 2001.
II. Type ‘T’ is part of the subject of a set operation. For

example, ‘claim’ in:
 assert client its number of claimed categories =
 count claim its policy its category
 per policy its client.

In case of a deletion it is not relevant whether or not the
type term is subject or is part of a subject. The deletion of
a type term does not always lead to a value modification
of a derived term. An example is the deletion of a claim
not having a date in 2001. In general, we must determine
which derived terms are depending on a type term
involved in a deletion:

1. extend term with priority = 0.
2. extend term with independent =
 nil dependency per term.
3. extend term with deleted =
 any type term where type = “T” per term.
4. extend term with first =
 any dependency where involved_term its deleted
 per term.
5. update term its priority = 1
 where first or (independent and not deleted).

 259

6. extend term with second =
 any dependency
 where involved_term its priority = 1
 and involved_term its modified
 per term.
7. update term its priority = 2 where second. {etc.}

Because of the occurring deletion, the predicate
‘involved_term its modified’ is superfluous in step 4, but
this predicate is still relevant after step 5. As an example
we consider the deletion of a claim in 2001. Initially, all
derived terms (assertions 1-7) have priority 0. After step 5
only ‘category its costs2001’ (assertion 3) gets priority 1.
If the value of the involved instance of ‘category its
costs2001’ is changed then the following step is an update
of the priority of the term specified by assertion 4, etc.

3. Modifying an instance of attribute ‘A’, acting as a sub
 term in a calculation.
An example is the modification of an instance of the
attribute ‘claim its reimbursement’. We only describe the
first seven steps:
1. extend term with priority = 0.
2. extend term with independent =
 nil dependency per term.
3. extend term with A_related =
 any attribute term where attribute = “A”
 per term.
4. extend term with first = (A_related or independent).
5. update term its priority = 1 where first.
6. extend term with second =
 any dependency
 where involved_term its priority = 1
 and involved_term its modified
 per term.
7. update term its priority = 2 where second. {etc.}

A complication is that in case of a value violation a
required action might act as a trigger. An example is the
required insertion of at least one instance of ‘policy’
associated with the insertion of a new client. This triggers
assertion 7:

assert client its policy_number (1..*) = count policy
 per client.

The required insertion of an associated instance of
‘policy’ for the year 2001 triggers assertion 2, which in its
turn activates assertion 4, and so on.

6. DISCUSSION

Procedural ECA approaches to the maintenance of
derived information are versatile and efficient because
actions and calculations can be dedicated to specific
events. They allow - but do not guarantee - adequateness
of corrective actions because they do not support a
predefinition of allowed values for derived data, which
impairs a comparison between calculated and allowed

values. Furthermore, rule priority must be specified for
each anticipated triggering event because rule priority
depends on the event, which could possibly lead to
complex scenarios.
 Using the proposed meta model, it is not necessary
to specify a procedure for each anticipated event because
the set of triggered assertions can be inferred from the
event. The registered dependencies between terms,
enables a DBMS to calculate term priority per event and
to maintain the consistency of the set of interdependent
assertions in case of deleting an assertion referenced by
another assertion.
 Moreover, we can prevent cyclic dependencies
between derived terms if we require that assertions may
only apply constants or previously registered terms. Using
assertions, the effect of an action on a derived value can
be compared with the allowed value(s), which supports
predefined actions and user defined actions as well.
 Still some problems must be solved in Xplain: how to
specify actions, how to guarantee adequateness of actions
and how to infer efficient calculations from set operations
and events.

REFERENCES

[1] ACT-NET Consortium, The Active Database

Management System Manifesto: A Rulebase of
ADBMS Features, SIGMOD Record 25(3), 1996, 40-
49.

[2] H.-J. Appelrath, H. Berends, H. Jasper and O.
Zukunft, Case Studies on Active Database
Applications, Proc. 7th Int. Conf. on Database and
Expert Systems Applications DEXA’96, Zürich,
Switzerland, R.R. Wagner and H. Thoma (eds.),
LNCS 1134, 1996, 69-78.

[3] J.A. Bakker, A semantic approach to enforce
correctness of data distribution schemes, The
Computer Journal 37(7), 1994, 561-575.

[4] J.A. Bakker, Object-Orientation Based on Semantic
Transformations, Proc. 7th Int. Conf. on Database and
Expert Systems Applications DEXA’96, Zürich,
Switzerland, R.R. Wagner and H. Thoma (eds.),
LNCS 1134, 1996, 163-176.

[5] J.A. Bakker, An Extended Meta Model for
Conditional Fragmentation, Proc. 9th Int. Conf. on
Database and Expert Systems Applications DEXA’98,
Vienna, Austria, G. Quirchmayr, E. Schweighofer and
T.J.M. Bench-Capon (eds.), LNCS 1460, 1998, 702-
715.

[6] J.A. Bakker, A Semantic Framework for the Design
of Data Distribution Schemes, Proc. 11th Int.
Workshop on Database and Expert System
Applications DEXA 2000, Greenwich, London, UK,
A.M Tjoa, R.R. Wagner and A. Al-Zobaidie (eds.),
IEEE Computer Society, 2000, 653-660.

[7] J.A. Bakker, Semantic Partitioning as a Basis for
Parallel I/O in Database Management Systems,
Parallel Computing 26, 2000, 1491-1513.

 260

[8] B. Bakker and J. ter Bekke, Foolproof query access
to search engines, Proc. 3rd Int. Conf. on Information
Integration and Web-based Application & Services
iiWAS 2001, Linz, Austria, W. Winiwarter, St.
Bressan and I.K. Ibrahim (eds.), Österreichische
Computer Gesellschaft, 2001, 389-394.

[9] S. Ceri and J. Widom, Deriving Production Rules for
Incremental View Maintenance, Proc. 17th Int. Conf.
on Very Large Databases, Barcelona, Spain,
R.C.G.M. Lohman and A. Sernadas (eds.), 1991,
577-589.

[10] S.Y. Cheung, Implementation of a Data Language
for the Semantic Data Model, Masters thesis, Delft
University of Technology, Faculty of Information
Technology and Systems, 1984 (in Dutch).

[11] B. de Boer and J.H. ter Bekke, Applying semantic
database principles in a relational environment,
Proc. IASTED Int. Conf. APPLIED INFORMATICS,
Symp.1, Artificial Intelligence and Applications,
Innsbruck, Austria, M.H. Hamza (ed.), ACTA Press,
2001, 400-405.

 http://www.pobox.com/~berend/xplain2sql/
index.html

[12] O. Etzion, PARDES- A Data Driven Oriented
Active Database Model, SIGMOD Record 22(1),
1993, 7-14.

[13] R. Elmasri and S.B. Navathe, Fundamentals of
Database Systems, 3rd edition, Addison-Wesley,
2000.

[14] A. Gupta, I.S. Mumick and V.S. Subrahmanian,
Maintaining Views Incrementally, SIGMOD Record
22(2), 1993, 157-166.

[15] N.W. Paton and O. Díaz, Active Database Systems,
ACM Computing Surveys 31(1), 1999, 63-103.

[16] F.D. Rolland, The Essence of Databases, Prentice
Hall, 1998.

[17] M. Stonebraker, A. Jhingran, J. Goh and S.
Potamianos, On Rules, Procedures, Caching and
Views in Database Systems, SIGMOD Record 19(2),
1990, 281-290.

[18] J.H. ter Bekke, Semantic Data Modeling, Prentice
Hall, 1992.

[19] J.H. ter Bekke, Meta Modeling for End User
Computing, Workshop Proc. 6th Int. Conf. on
Database and Expert Systems Applications DEXA’95,
London, UK, N. Revell and A. Min Tjoa (eds.), 1995,
267-273.

[20] J.H. ter Bekke, Can We Rely on SQL?, Proc. 8th Int.
Workshop on Database and Expert Systems
Applications DEXA’97, Toulouse, France, R.R.
Wagner (ed.), IEEE Computer Society, 1997, 378-
383.

[21] J.H. ter Bekke, Advantages of a Compact Semantic
Meta Model, in Proc. Second IEEE Metadata Conf.,
Metadata 97, Silver Spring, Maryland, USA, 1997.

 http://www.computer.org/conferen/proceed/meta97/
list_papers.html

[22] J.H. ter Bekke, Manual of the Xplain-DBMS, version
5.8, Delft University of Technology, 1999 (in Dutch).
http://is.twi.tudelft.nl/dbs/terBekke.html

[23] J.H. ter Bekke, Semantic requirements for databases
in casual environments, Proc. SAICSIT’99: Prepare
for the New Milennium, Johannesburg, South Africa,
P. Machanick (ed.), Electronic extension of the
South African Computer Journal 24 (Nov. 1999).
http://www.cs.wits.ac.za/~philip/SAICSIT/SAICSIT
~99/papers_ideas.html

[24] J. Widom and S. Ceri (eds.), Active Database
Systems, Triggers and Rules for Advanced Database
Processing, Morgan Kaufmann, 1996.

