Systems for Large Data Bases, P.C. Lockemann and E.J. Neuhold, (eds.)
North-Holland Publishing Company, 1976

A DATA MANIPULATION LANGUAGE FOR RELATIONAL DATA STRUCTURES

J.H. ter Bekke
Eindhoven University of Technology
Department of Mathematics
Eindhoven
The Netherlands

Abstract

Some queries on a relational database are analyzed. This analysis results in new
concepts for a high-level data manipulation language. In the proposed language the
cardinal number concept from set theory is applied, using semantic information on
the contents of a database. Each query formulation in this language consists of a
small number of easily manageable expressions. This means that the simple relatio-
nal data structures alsoare reflected in the programs which operate on these struc-
tures.

Keywords and Phrases: relational data model, data manipulation language, database,
data structure, set theory, cardinal number, subset invariant.

CR Categories: 3.70, 4.22, 4.33, 4.34.

0. Introduction

A database consists of a collection related data, considered tc be of interest for
different applications. In the relational model 1], all data are represented in
relations. Each relation contains data for a set of similar entities, such that
every tuple in a relation represents one entity. In a relaticn the ordering of
tuples is considered to be irrelevant. The same applies to the ordering of attrib-
utes which together form a relation.

With this datamodel mathematically inspired high-level data ranipulation languages,
e.g. based on the relational calculus and the relational algebra, were proposed as
languages for databases [2,3]. Other languages were also develcped which do not
make use of these mathematical concepts [4].

These languages have a disadvantage in common, in that they often lead to one sin-
gle and therefore formidable expression for a query on a datapase. In contrast with
these languages, our proposal for a data manipulation language leads to a problem
formulation which also for complex queries consists of a small number of simple
expressions.

The key idea in this approach is the use of "subset invariants", which exist betweern
database relations and which embody semantic information on tre database. They nat-
urally lead to the use of the cardinal number concept from s theory.

e

.

iven of a sample
on gives arn informal
e. The examples in
rt of the proposed
data manipulation

This paper consists of three sections. First a description
database, which will be used in all examples. The second se
introduction to some concepts of our data manipulation languag
this section have been selected to illustrate the retrieval pa
language. Finally, a short comparison is presented with other
languages for relational databases.

1. Database definition

A relational database consists of a collection time-varying relations. Each rela-
tion in a database is used to represent data about a set of similar entities oxr
data about a set of similar associations between entities. In the relational data
model there is no difference between entities and associaticns.

159

160 J.H. TER BEKKE

The database definition provides information about the entity-types which are of
interest to a community of users. For all applications it is the base of operation.
A data manipulation language is used for maintenance and retrieval of data. The lat-
ter enables the user to select data from existing entities, but also toc derivg new
information (possibly new entities) from them.

all examples in this paper concern a database which consists of seven normalized
relations (i.e. attribute values are not compound values). In each relation one at-
tribute or a number of attributes (called the primary key of a relation) uniguely
identify the tuples; in the definition below these attributes are enclosed by
square brackets.

rel S.[lsnl, snzre, location

rel P.[pnl, prame, stock, min stock, max stock
rel A.lsn,pnl, price

rel T.[sn,pn,datel, quantity

rel C.[pn,dnl, quantity

rel D.[dnl, drame, location

rel E.[en], erame, location, an

Semantics of these relations

- Relation S contains data about suppliers. For each supplier are recorded the at-
tributes: sn (supplier number), srname (supplier name) and location (city of opera-
tions).

- Relation P contains data about parts. For each part are recorded the attributes:
pn (part number), prname (part name), stock (actual stock), min stock (lower stock
limit) and max stock (upper stock limit).

- Relation 4 contains data about assortments, which are associations between sup-
pliers and parts. This implies that the combination (sn,pn) appears as the prima-
ry key of the relation. Furthermore each association provides the price at which
supplier sn can supply part pn.

- Relation T contains data about parts ordered. Each tuple in this relation can be
considered as an association between a tuple from relation A and a date (date of
order). Each association provides also the attribute quantity (quantity ordered).

- Relation C contains data about associations between parts and departments. Each
association provides the quantity of part pn allocated to department an.

- Relation D contains data about departments. For each department are recorded the
attributes: dn (department number), drame (department name) and location (city in
which it is located).

- Relation E contains data about employees. For each employee are recorded the at-
tributes: en (employee number), engme (employee name), location (residence) and
dn (department).

A database is not an arbitrary collection of entities. On the contrary, time-inde-
pendent relationships exist between different sets of entities. In our database,
the following relationship should remain invariant in time:

"The set of part numbers appearing in relation C (denoted by Cpn) is a subset of

. . . n
the set of part numbers appearing in relation P (denoted by Fp Y.
Mathematically: cPn c .

. ; sn sn n n

Other invariants are: 4~ ¢ § s & < =4 B 7°" < A" s " [Jide

n an n an
Ed c D > Cd c D
In what follows these invariants will more specifically be called "subset invar-
iants". These subset invariants represent in fact consistency requirements, which

the contents of a database must satisfy. An operation on a database could violate
a subset invariant X ¢ Y:

£

A DATA MANIPULATION LANGUAGE 161

- when an element is inserted in the set X,
~ when an element is removed from the set Y.

The maintenance of these subset invariants is considered to be a function for the
database management system.

2. Selection from the database

In this section an informal introduction is given to the concepts which may be used
in the formulation of gqueries on a relational database. These concepts will be in-
troduced by examples. The following symbols are part of the definition language:

- braces: enclose optional parts of expressions.
- angle braces: enclose metasymbols.

2.1. The selection expression

The selection expression occupies a central position in our data manipulation lan-
guage; it appears in each formulation of a query on a database. The general format
of a selection expression will be:

(<relation> { .<e list> } { | <predicate> })

Semantics: A selection expression will be used to obtain (usually new) tuples from
which satisfy the <predicate>; in the absence of this <predicate> all tuples are tc
be considered. The expressions of the <e l7ist> (i.e. expressions formed with at
least one attribute of the relation) must be evaluated to yield the desired data in
the new tuples. However, in the absence of <e l7st> all attributes of <relation>

are provided. It should be noted that in a selection expression no elimination oI
duplicate (new) tuples is carried out (unless it is stated explicitly, see query S,
The <relation> { . <e list> } part of a selection expressicn is also called thre
“"target", therefore <relation> will sometimes be called "target relation".

The next two simple queries illustrate the use of the selecticn expression. The
first example is of the simplest form: selection of data using only one relation
of the database.

Query 1. Get names of suppliers located in paris.
get (S.sname | location = "paris")

The verb get preceding a selection expressicn indicates that the tuples identifiez
by the selection expression are to be output. From this formulation we see immedi-
ately thatrelation S must be considered; only values for attribute sname are to ke
output in this gquery. Moreover, because ro projection is indicated duplicate values
are not removed from this list.

We do not introduce the concept of a free variable in our manipulation language.
That is why attributes in the target relation are indicated simply by their attrip-
ute name. For these attributes we will alsc use the term "primary attribute".
Primary attributes in this example are gname and location.

In the next example we do not restrict ourselves to one relation of the database.

uery 2. Get names of employees who are rot employed in their place of residence.

2}
%

get (E.ename | locatior # Dldnl.lozcaz
o

For each employee in relation E, we compare the value of tre attribute locatior
with the value of the attribute lceagtion in the corresponding tuple of relation - .
The latter value can be found by using the value of attribute 7, which occurs irn
both relations. Because this attribute is the primary key of relation [), we use in
our manipulation language the well-known nctation of the surscripted variable.

162 J.H. TER BEKKE

An attribute that occurs in a relation associated with the target relation will be
called "foreign attribute"”. The foreign attribute in this example is the attribute
2Ldnl. Location.

In the last example two (locaticr) values from different relations are compared.
This comparison can ke performed because of the correspondence between the tuples
from which the values are taken. This correspondence is provided by the attribute
dn, which turns out to be the primary key in one of the relations considered. This
kind of correspondence must always be present if attribute values of different
relations have to be compared.

For the formulation cf gueries the restriction that only set elements can be refer-
red to has no adverse consequences. On the contrary, it has a positive influence on
thé problem analysis (this is illustrated by example 5 of this section).

Henceforward we will distinguish the next four basic elements in a selection
expression:

- Primary attribute: <attribute>
A primary attribute is an attribute in the target relation.

- Membership test: <relation> [<key attribute>]
The membership test Rlpl is frue if the tuple with key value equal to p occurs

in relation R; otherwise it is false. This concept will be used in example 4.

- Foreign attribute: <relation> [<key attribute>] . <attrilute>
If the membership test part 7F[p] in the foreign attribute Rlpl.q is true, then
Flpl.q yields the attribute value g of the tuple in relation 7 with key value
equal to p; otherwise it yields the value QEE.

- Constants and variables of various types.

2.2. Use of subset invariants

Next to the primary key concept, the subset invariant is another important element
in our formulation of queries. In all queries where otherwise sets would have to

be compared, we aim at a description in which we can profit from a subset invariant.
When using this approach, we are allowed to abstract ourselves from the actual con-
tents of the sets; only cardinal numbers of sets (the number of elements in a set)
are needed in the problem formulation. This approach is illustrated by the follow-
ing examples.

Query 3. Get names of suppliers who are able to supply all parts.
The condition that has tobe satisfied by the relevant suppliers is:

n
"All part numbers in relation P (denoted by Pp) occur also in the set of part num-

n
bers pn in relation A that can be supplied by the supplier sn (dencted by Ain)".
Or in other words, does

AP o PP (1)
sn

hold.

Let Asn denote the subset of relation A corresponding with supplier sn.

From Asn < A and Apn c Ppn we have

AP P (2)
sn

Hence (1) can only hold if

4P = PP ()
an

. n n .
Since Ain < 7 e may also equate the cardinal numbers:

A DATA MANIPULATION LANGUAGE 163

count(AP?) = count(FF") (4)
sn

Since the combination (sn,pn) is the primary key of relation A, any part number
occurs at most once in a subset 4 an’ so we may also investigate the following wea-
ker condition: ‘

count(A) = count(P) (5)
sn

For each supplier in relation S we need the cardinal number of the corresponding
subset Agy. For that purpose we could create a temporary relation S’ which, next
to the attributes of relation S, also contains the cardinal numbers of the corre-
sponding subsets in relation 4. This is denoted by:

S! = S @ count(A)
sn

Since relation S' is obtained from relation S by appending new information to en-
tities in relation S, we will use the phrase: extending a database relation.

The notation introduced so far for the extension concept is not suitable to ex-
press more complex situations which can arise in queries. Instead we will use an
expression similar to the selection expression. The general format of an extension
statement is:

ext <relati0n1> . <attribute> :

<set function> (<relation,> {.<e list> } per <a list> { | <predicate> })

Semantics: An extension of <relationy> with <attribute> is only defined if values
for attributes in <a l7s8t> could occur as primary key values in <relation,>. Then
each tuple in <relationj> corresponds with a (possibly empty) collection of tuples
in <relationg> which satisfy the <predicate>. From this collection of tuples anoth-
er collection is obtained by selecting only those attributes that are defined in

<e list>. The value for <attribute> in a tuple of <relation;> is finally obtained
by applying <set function> to the latter collection of tuples.

An extension of a relation is temporary, which means that it is only defined in the
context of the query concernred.

The extension of relation 5 with attribute gsrm using this concept would be:
ext S.asm: count(4 per sn)
Relation $ may now temporarily be considered tc read:

rel S.[sn], srame, locatiown, asm

The following set functions may be applied on tuples in normalized relations:

count: delivers the number of elements in the corresponding collection.
any : delivers the value true if the correspording collection is not empty, else

the value false.

empty: delivers the value true if the corresponding collection is empty, else the
value false. -

max : selects the maximum of the expression <¢ 17st> in the corresponding collec-
tion; for an empty collection the value KDZ will be delivered. It is obvious
that it can only be applied for attributes with a defined ordering.

min : selects the minimum value of the expression <¢ l78t> in the corresponding
collection; for an empty collection the value fii will be delivered. It can
only be applied for attributes with a defined ordering.

total: evaluates the sum of the expression <e 17st> of the corresponding collection;
for an empty collection the value nZl will be delivered. It is obvious that
addition must be defined for the attributes in <e ligt>.

164 J.H. TER BEKKE

The following set function may also be applied on tuples in unnormalized relations
(obtained from normalized relations):

list: selects the atiribute values of <e l7st> attributes from the corresponding
collection; Zor an empty collection the value nil will ke delivered. The
result is a corpound attribute.

Next to an extensicr, we will need in the formulation of this query a variable
which contains trne cardinal number of a set. This can be realized by using the fol-
lowing assignment statement:

var <variables @ <set function (<relations { .<e idst> } { | <predicate> })

Semantics: The result of this statement is that the value of the <set functicn>,
Excepting the function 17st all afore named functions may be used in this state-
ment. A

After these preparations the formulation of the third query now becomes self-ex-
plaining:

ext S.asm: count(4 per sn)
var p ! count(?)
get (S.sname | asm = p)

The execution order of the retrieval statements is by this formulation only partial
ly fixed. Because the first two statements are independent cf each cther, they migh
be executed in parallel. However, the last statement is dependent on the results of
other statements, therefore it must be executed last.

At this moment we can explain why set functions can not be used in the predicate
or target of a selection expression. If a set function would occur in a selection
expression, this would mean that the function must be evaluated over and over again
for each tuple in the target relation. We can distinguish the following cases:

- The se’. function must be evaluated for each tuple in the target relation because
th~ set function result is dependent on the values in the tuple. Before the se-
lection of information can take place the creation of derived information is done
separately by means of an extension. Within this creation process a temporary at-
tribute is created which contains the set function result.

- The result &f the set function is dependent on values in an associated relation
of the database. In this case the associated relation should be extended with the
desired attribute. The foreign attribute can be used to refer to this desired at-
tribute.

- The set function provides a value which is constant for all tuples in the target
relation. In this case it is obvious that a temporary variable should be created;
the set function result will be assigned to this variabkle.

Using subset invariants, the formulation for the following query is rather obvious.
Query 4. Get names of suppliers who have at least the assortment of supplier s2.

The set of part numbers in the assortment of supplier s2 (i.e. Aig) plays an impoxr-
tant role in this query. -
The condition that has to be satisfied by the relevant suppliers is:

pn pn
Asn 2 AsZ (6)

There is no subset invariant between these sets. Consequently, we may not use the
cardinal numbers for verifying this condition; however, condition (6) is equivalent
to the following condition:

A DATA MANIPULATION LANGUAGE 165

pn pn, _ .pn
(Asn n AsZ) - AsZ (7)

A trivial subset invariant exists between the sets in this condition, so that we

may use cardinal numbers:

n
)

count(AF"
sn 2

n A2%) = count(a) (8)
s 82

1
For the formulation of this query we will create a temporary relation. In our manip-
ulation language this can be done by using the following statement:

rel <relation;> . <a list> : (<relationy,>.<e list> { | <predicate> })

Semantics: By means of this statement a temporary <reZationJ> is defined with at-
tributes <a list> which are taken from <e list> of <relationg>. In <a list> there
must be at least one attribute enclosed by square brackets to denote the primary
key of the new relation. On the right hand side of the colon a selection expression
must be given.

(Note that whenever a key value occurs in more than one tuple as a result of the
selection expression, then it is not determined which tuple will be included in the
temporary relation.)

The formulation of this query is now:
rel R.(pnl : (A.pn | sn = "s2")
ext S.asm : count(A per sn | Rlpn])
var asm s2 : court(R)
get (S.sname | asm = asm s2)

(Note: It is also possible to formulate this query without the creation of a tempo-
rary relation, namely by extension of relation P. The alternative formulation is
left as an exercise for the reader.)

2.3. Derived entities

The foregoing queries were all straightforward, in the sense that attributes of
existing entities were asked. In the next example we ask for attributes of entities
that still have to be created since they are not present in the database.

Query 5. Get locations where at least three suppliers operate.

In this query we ask for locations of suppliers. Because there is no relation in
the database with locations as entities, we must create such a temporary relation.
This is done by a projection (dencted by [and J) of relation £ on the attribute
locaiion. Next, we must extend this temporary relation with the number of suppliers
in each specific location. The locations for which this number is:at least three,
must be selected. Therefore, ocur solution to the problem will bke:

3

el L.[location] : (S.location)

ot

©

ount & : count(5 per location)

[©]
W
[

~

L.co
(L.location | count

Q
ot

e

[

2.4. Some simple gueries

The following simple queries illustrate the use of other set functions.

Query 6. Get name and assortment for each supplier in paris.

rel R.{enl, sname : (F.sn, ername | location = 'raris!)
2xt Roasm ¢ list(d.pr per su)
g pel

t (R.sname, asr)

:

Tob J.H#. TFR BEKKE

uery 7. Get part numbers and names Zcr unused parts.

- . o
ext F.unused : <rpty(l per rn)
get (F.pn, e | wimeed)

Query 8. and total wvoclume of parts cn order.
get (F.rn, vol)

Tre following declar car of gueries:
def <recaticis,<attriln

Semantics: This form enables us to split up complex expressions con attrikutes into
simpler expressicns. The result of this declaration is the apparent extension of
<relaticwn> with<a: ute>, the attribute value being equal to the evaluation of

<EeXpresaion on atc tes>,

Stock control problen

We conclude this series of examples with a more complex proklem which illustrates
how a stock contrel preoblem can ke formulated using the concepts of our data manip-
ulation language.

> in relatien 7 denctes the actual stock of Parts for
which the 87cc~ is zelow the minimum stock, must be ordered frc the sup-
pliers tendering t iinimum price. The ordersize is equal tc the ence betwee

e
ctual steck., Furthermore, a list must ke given specifying for
1 1

The attribute 8:i¢

5

maximum stcck and a

each order the supplier name, locaticn and orderlines. The orders mus=z so be adde
to relation T (the attribute date gets the value ""7£037).

It is possible that a part tc be ordered can not be supplied by any supplier. For
these parts we wart z list of part numters and names.

We solve this prcilem by splitting it up into several simpler problems: We need the

minimum price at which each part can ke supplied. This is obtained bLy:

ext P.min price : min(a.price per on)

= ¢ [
Further, we have to know where the orders must be placed: A supplier is candidate
to supply a certain part, if he is able to supply it at the minimum price for that
part. Hence, a supplier number in an #-tuple is candidate if the price in the
A-tuple is equal to the minimum price for that part in the corresponding F-tuple:

def A.sn cand : price = Plpnl.min rrice
-—L IS t =

A part number in an A-tuple is candidate if the actual stock is below the minimum
stock in the corresponding F-tuple, so we define:

def A.pn cand : Plpnl.stock < Plpw].min steck
Next we define the ordersize:
def A.supply : Pleonl.max stock — Flpnl.stock
Now we can create a temporary relation O with all orderlines:
rel 0.[pnl, sn, quantity : (A.pn, en, supply | en cand and pn cand)
The insertion in relation I is obtained by the (herewith introduced) statement:
ins T.sn, pn, date, quantity : (O.sn, pn, "7603", quantity)
The list of orderlines is obtained by the following statements:
ext S.orders : any(0 per sn)
ext S.orderlines : list(O.pn, quantity per sn)

get (S.sname, location, orderlines | orders)

A DATA MANIPULATION LANGUAGE 167

Finally the list of undeliverable parts:
ext P.no supplier : empty(A per pn)
get (P.pn, pname | no supplier and stock < min stock)

This completes the formulation for this problem in our language.

3. Comparison with some other data manipulation languages

Rather than undertaking the formidable task of formulating the foregoing stock

control problem with two other data manipulation languages for n-ary relational

database systems, i.e. Alpha [2] and Sequel [4], we will present a nonexhaustive
comparison of simpler queries. The Alpha language is a high level language based
on the relational calculus; Sequel is based on so-called mappings.

The difference with these languages will be shown by some examples from the fore-
going section. Firstly, we compare our language with Alpha:
Query. Get supplier names for suppliers who are able to supply all parts.

{ s.sname | s e S A VpéP 3 e

The relational calculus description is equivalent with the verification of the
condition

ApVL 5 #9/7
2

(s.sm = a.sn A a.pn = p.pn) }

for each supplier sn, since in a relational calculus description subset invariants
do not play any role. Hence, sets have to be compared instead of cardinal numbers
of sets.

The single statement formulations of queries in the relational calculus leads,
because of the nesting of quantifiers, to unmanageable expressions. (Even if the
formulation could be split up into simpler expressions, we wculd obtain a descrip-
tion which differs completely from our proposal.)

The concept of primary key, which plays an important role in verifying the database
consistency, is used heavily in our data manipulation language. On the other hand
in Sequel no such concept exists. In the next example we see that such a concept
facilitates a query formulation substantially.

Query. Get names of employees who are not employed in their place of residence.

In Sequel there are two possible (single statement) formulations for this query.
Overlooking the primary key concept one might get a formulation analogous to Q 7
in reference [4].

select erame
from e in E
where dn in select dn
frorm D
where lecation # e, location

For each employee we have to create a subset of department numbers (this subset may
be pretty large). Furthermcre, we must verify whether a given department number is
included in this set.

This formulation may lead to a very time-consuming implementation. It is caused by
the order in which the user has given the two "jointerms". This together with the
overlooking of the primary Key concept leads to the description above.

In our language the user must specify the order in which the jointerms have to be
evaluated and lean heavily on the primary key concept.

In this example we see that a formulation using Sequel has a network structure. For
simple gqueries this has no unpleasant consequences, but complex queries are almost
unmanageable.

108 J.H. TER BEKKE

4, Conclusion

The relational datamodel is often associated with high-level data manipulation
languages based on the relational calculus or relational algebra. In this paper it
is indicated that these languages lead to unmanageable problem formulaticns. The
use of semantic information about relations in the database and the possibility of
introducing temporary relations or temporary extensions of existing relations leads
to an approach in which this disadvantage does not exist. Each formulation in the
proposed language follows naturally from the problem specification. It consists of
a small number of simple statements; each statement representing a necessary step
in the derivation of the desired result. These statements Zorm a descripgion which
is easily adapted to variations in the problem specificaticn.

Acknowledgment

The author is indebted to professor R.J. Lunbeck and to F.J. Peters and F. Remmen
for their valuable remarks during many fruitful discussions.

References

1. Codd, E.F. A Relational Model of Data for Large Shared Data Banks.
Comm. ACHM 13, 6 (June 1970), 377-387.

2. Codd, E.F. A Data Base Sublanguage Founded on the Relational Calculus.
Proc. 1971 ACM SIGFIDET Workshop, San Diego, Calif, Nov. 1971, 35-68.

3, Codd, E.F. Relational Completeness of Data Base Sublanguages, Courant Computexr
Science Symposia. Vol. 6: Data Base Systems, Prentice Hall, Englewood Cliffs,
N.Y. 1971.

4. Astrahan, M.M., Chamberlin, D.D. Implementation of a Structured English Query
Language, Comm. ACM 18, 10 (Oct. 1975}, 580-588.

