

FAST RECURSIVE DATA PROCESSING IN GRAPHS USING REDUCTION

J.H. ter Bekke and J.A. Bakker
Faculty of Information Technology and Systems

Delft University of Technology
{J.H.terBekke, J.A.Bakker}@its.tudelft.nl

Abstract

This paper presents an algorithm for recursive data
processing in directed graphs. The proposed algorithm
applies graph reduction in order to determine both starting
points and a correct ordering of recursive operations,
provided the directed graph is a-cyclic. Therefore it is
essential that the algorithm is also able to detect cycles
efficiently. The algorithm arose from the implementation of
recursive, semantic query specifications and is
implemented in a DBMS prototype. Experiments confirmed
that the theoretically estimated time complexity is O(dN),
where N is the number of arcs and d is the depth of the
graph (d ≤ N). The worst-case performance is O(N2), also
for cycle detection.

Keywords : graph algorithm, longest path, recursion, query
language, expressive power, semantic modeling.

1. Introduction

The main reason for the development of a generic
algorithm for ordering arcs and nodes during recursive
query processing was the objective that software should
be able to determine starting points for data processing in
directed a-cyclic graphs such that end-users do not have
to specify these starting points. This complies with one of
the main objectives of database systems based on the
classical three-layer architecture to enhance that end-
users can specify queries in a declarative (content-based)
way; they should mainly specify what and not how the
problem should be solved.
 This approach resulted already in a new query
implementation in a semantic DBMS [9] with an interpreter
able to translate non-procedurally recursive queries into
simple, well-ordered recursive operations. Such a layered
approach, separating what and how, is impossible if
recursive operations are specified directly in a
programming language: then the choice of starting points
is an inevitable part of the problem, which might be
difficult for end-users. For example, the algorithms of Baily
[1] assume given starting points. And so do problem
specifications as those presented by Garey and Johnson
[5].
 In general, considering earlier approaches, ordering
algorithms consist of two phases, in which successor lists
play an important role [2, 4]. In the first phase, tuples from

input are converted into successor lists in main memory.
In the second phase the successor lis ts are expanded and
written to disk. The large number of tuples created during
this last phase results in time-consuming duplicate
elimination and cycle detection, which might form an
obstruction for processing complex graphs [6].
 Contrary to these earlier approaches we use another
solution; we consider only existing arcs of the graph and
there is no need to expand it with successor lists. In this
new algorithm only safe graph reduction takes place
during the ordering of arcs, which makes the algorithm
very efficient and creates only a minor dependency on
main memory or disk. It makes the algorithm also suitable
for large applications, even on small computers. Another
advantage, in particular for casual environments as the
Internet, is its reliability because graph reduction also
enables us to detect cycles in a graph before starting
recursive operations. This approach therefore shifts the
investigation of the correctness of the input graph data
towards the DBMS: software is able to detect cycles and
to give an appropriate error message to the end-user, who
needs not to worry about starting points and cycles.
 This paper continues with an introduction to semantic
modeling in section 2 and discusses some examples of
recursive queries in section 3. Section 4 presents the
ordering and cycle detection algorithm.

2. Semantic abstractions

This section contains an overview of the semantic data
modeling abstractions needed for graph applications [8].
The concept of type is fundamental. Types are
represented by rectangles in diagrams. Aggregation is
defined as the collection of a certain number of types into
a unit, which can be regarded as a new type. A type occur-
ring in an aggregation is called an attribute of the new
composite type. It is important to note the analogy with
the mathematical set concept: attributes are considered as
‘elements’ of a type. Aggregation allows view
independence (object relativity): we can discuss the
obtained type (possibly also acting as a property of
another type) without referring to its attributes. By
applying this principle repeatedly, a hierarchy of types can
be set up. An example of a hierarchy depicting two
relationships between two types is given in figure 1.
Normally only composite types are visualized in an
abstraction hierarchy. If a line connects two facing

rectangle sides and the aggregate type (according to its
definition) is placed above its attributes, this indicates
aggregation. In our example database we consider the
types ‘description’ and ‘length’ as base types. A type is
completely defined by a list of its attributes, so we could
apply the following type definitions to node and arc
relationships shown in figure 1. Here we can consider,
depending on the context, ‘node’ as a type or as an
attribute in ‘arc its from_node’ or in ‘arc its to_node’.
Although these attributes suggest that the direction of
arcs is from ‘from_node’ to ‘to_node’, this data model
does not prescribe this interpretation. The model also
allows for another interpretation, in which arcs have the
reverse direction. In section 3 we show that the recursive
cascade statement determines the direction of arcs and the
order of recursive processing.

 type node = description.
 type arc = from_node, to_node, length.

Figure 1. Abstraction hierarchy for directed graphs

The corresponding semantic database contains two simple
tables, partly shown in figure 2.

node description

A loc1
B loc2
C loc3
F loc5
..

arc from_node to_node length

1 A B l1
2 A B l2
3 A C l3
4 A F l4
..

Figure 2. Example database

3. Query specification

The final result of an ordering of nodes in a directed
graph, which is a prerequisite for recursive query
processing, is determined by the position of the arcs in the

graph. Our primary goal is therefore to re-order the
collection of arcs, not the collection of nodes. This
ordering is used in the processing of the following
examples of the recursive update statement cascade; we
could compare it to keeping score in a game. Recursive
applications can be found in critical-path problems related
to project planning [9] or product databases [10]. Here we
give an example of a longest path calculation, related to
the graph in figure 3.

 E
 F
 8 9 10
 C 7 D
 H 4
 3 5 6 G
 A B
 1
 2

Figure 3. Example of a directed graph

Many different paths can be followed in such a directed
graph and at least one of them is the longest. Using the
Xplain query language the first part of the solution is to
calculate for each node the longest path from a starting
node to that node, whereas the second part is to calculate
for each node the longest path from that node to a last
node. First, we explain the first part of the solution,
specified as follows:

extend node with first_path = 0.
 /* Initialize all nodes, now ordering is irrelevant. */

cascade node its first_path =
 max arc its length + from_node its first_path
 per to_node.

After executing this cascading update operation each
node has a certain value for the first path starting in some
node not pointed to by any arc; more than one starting
point is possible.
 Using a reduction scheme, the value of the first path
of the nodes A, G and H remains 0 because there are no
arcs pointing to them. They could act as a starting point.
After the first reduction step a temporal value of ‘node its
first_path’ can be calculated for the destination nodes B,
C, E, and F using the lengths of the removed arcs 1, 2, 3, 4
and 10. For the nodes C and F this value is the definitive
value because they have only one in-coming arc.
 After the second reduction step the value of the first
path can be updated for the nodes B, D and E. After the
third reduction step the first path of the nodes D and E
can be updated. After the fourth reduction the first path of
node E can be updated. Finally, after the fifth step, the
recursion stops because the remaining graph is empty.
 After this short description, we describe the recursive
processing in more detail. A first step is the removal of

arc

node

starting nodes: nodes without any in-coming arc. We can
consider these nodes as ‘not referenced’ by any incoming
arc. This operation is specified in the language C, using a
copy of the graph data (instances of ‘node’ and ‘arc’
including their attribute values). For reasons of
comprehensibility we could specify these operations in
Xplain terms:

extend node with in_degree = count arc per to_node.
delete arc where from_node its in_degree = 0.
delete node where in_degree = 0.

Consequently the arcs 1, 2, 3, 4 and 10 and the nodes A, G
and H are removed firstly, which results in the graph in
figure 4. In a similar way the remaining graph can be
reduced. The final result is a correctly ordered sequence of
groups, each containing a subset of removed arcs: [1, 2, 3,
4, 10], [5, 7, 8], [6] and [9]. After this ordering, the data
associated with the arcs of a group can be processed
group after group, using ‘arc its length’ and ‘arc its
from_node its first_path’. In this way the value of
instances of ‘node its first_path’ is updated in a correct
order.

 E
 F
 8 9
 C 7 D

 5 6
 B

Removed arcs: [1, 2, 3, 4, 10]

Figure 4 . Directed graph after the first reduction

 E

 9
 D

 6
 B

Removed arcs: [1, 2, 3, 4, 10], [5, 7, 8]

Figure 5. Directed graph after the second reduction

 E

 9
 D

Removed arcs: [1, 2, 3, 4, 10], [5, 7, 8], [6]

Figure 6. Directed graph after the third reduction

 E

Removed arcs: [1, 2, 3, 4, 10], [5, 7, 8], [6], [9]

Figure 7. Directed graph after the fourth reduction

After the fifth reduction (removal of node E) the result is
an empty graph.

Now we discuss the second part of the problem: how to
calculate for each node the longest path between that
node and some finish node (a node without any out-going
arc):

extend node with last_path = 0.
cascade node its last_path =
 max arc its length + to_node its last_path
 per from_node.

Now the graph reduction has to start in finish nodes (here
E, F and H). Arcs having a direction reverse to that in
figure 3 could depict this reversed processing of data in a
graph. Further reduction steps are similar to the first part
of the solution. After this second cascading update we
can calculate the longest path using the Xplain language:

value longest_path = max node its first_path + last_path.

All the arcs, including their nodes, on that longest path
can be shown, sorted by increasing value for ‘arc its
from_node its first_path’:

extend node with relevant =
 (first_path + last_path = longest_path).
extend arc with relevant =
 (from_node its relevant and to_node its relevant).
get arc its from_node, to_node, from_node its first_path
 where relevant per from_node its first_path.

If the graph contains more than one longest path, then the
counting of start and finish arcs specified by the following
two retrievals will reveal this situation, even if all these
longest paths have both the same start and the same
finish:

get count arc where relevant
 and from_node its first_path = 0.
get count arc where relevant
 and from_node its first_path = longest_path.

However, due to the nature of the problem, it is not
possible to specify a declarative solution presenting each
longest path and its correctly ordered sequence of
constituting arcs.
 From the semantic query specifications above follows
that users do not specify start and finish nodes: all nodes

may act as a starting point. The DBMS software
determines the ordering of reduction steps from the
cascade statement.

4. Ordering algorithm

The result of a recursive query is primarily determined by
the position of arcs: the connections determine the
topological ordering of nodes. Our primary goal is
therefore to re-order the collection of arcs, not the
collection of nodes. Only this ordering is used in the
processing of the cascade statement; it is comparable to
score keeping in a game. The general form of the cascade
statement is::

cascade <subtype> its <cascade attribute> =
 <function> <maintype> its <expression>
 per <grouping attribute>.

The following constraints regarding this statement must
be satisfied:

• <expression> must contain the <cascade attribute>,

this can be determined during the parsing process of
the query statement. The reference of <cascade
attribute> in <expression> (for example: ‘from_node’)
must differ from the reference in the <grouping
attribute> (for example: ‘to_node’). If this condition is
not satisfied the statement should be interpreted as a
normal update statement without prescribed ordering.

• <grouping attribute> (for example ‘to_node’) must be
identical to <subtype> (for example ‘node’), possibly
with a role added;

• It is evident that all usual constraints hold, for
example: types, attributes and operations must
comply and all specified attributes and types must
exist in the underlying data model.

• It is only necessary to create a list of arcs such that
an arc pointing to a node may only be followed by
arcs starting in that node. Arcs are pointing to the
node specified in the <grouping attribute>. For the
calculation of ‘node its first_path’ it is ‘to_node’ and
for ‘node its last_path’ it is ‘from_node’. The desired
ordering is therefore determined during the query
parsing process, by Lex and Yacc.

The algorithm for implementing a cascade query statement
therefore consists of two steps of which the first is
essential for the cascade statement:

1. Determine the order in which the arcs can be

processed. Note that only the cascade statement
determines this ordering. The parameters for this
ordering are determined during the parsing process of
the query statement. This ordering is generally not
needed in other query statements, such as the extend
statement.

2. Process all arcs in the cascade according to the
ordering determined in step 1. Contrary to that, other
statements use a system-defined ordering; then there
is no need to order the execution of the statement. An
example is the initialization of all instances of ‘node its
first_path’ to zero using the extend statement.

The parameters for the required ordering are determined
by the DBMS during the parsing process of the query
statement. The global structure of the ordering algorithm
is straightforward. Including the detection of cycles, this
algorithm is as follows:

init_structures ();
do {/* determine ordering */
 init_reference_counts ();
 update_reference_counts ();
 reduce_graph ();
}
until (no_reduction);

if (number_of_arcs > 0) {/* remaining arcs*/
 do {/* error handling */
 init_reverse_reference_counts ();
 update_reverse_reference_counts ();
 reduce_graph ();
 }
 until (no_reduction);
 print_arcs_in_cycles ();
}

The functions used fort the ordering algorithm:

• init_reference_counts ()
 The collection of nodes is determined by the contents

of the database. The semantic model requires
referential integrity: it does not allow any arc pointing
from/to a non-existent node. This function initializes
for each node all reference counts (number of arcs
pointing to a node) to zero.

• update_reference_counts ()
 The collection of arcs determines the number of

references to a finish node. This function requires a
scan through the collection of arcs. For N arcs this
scan has a time complexity O(N). In this way the
nodes not acting as a finish are determined. These
nodes are the starting points and determine where in
the graph reduction must start.

• reduce_graph ()
 Scan the collection of arcs. If the starting node of an

arc is not referenced (not pointed to) by any other arc,
put the arc on the ordering list for further processing
in the semantic cascade statement and reduce the
number of relevant arcs with one (remove the arc from
the graph). The arc remains in the graph (a collection
initially containing all arcs) if its start node is also the
finish node of an (other) arc.

In [3] is proven that this reduction process results in an
empty collection of arcs or in one or more cycles. The
graph contains a cycle if the first reduction steps end with
a non-empty collection of relevant arcs. In that case the
reverse reduction is carried out until no further reduction
is possible. At this point the arcs that contribute to cycles
are found and can be reported to the user. The progress of
the algorithm for a graph with cycles is illustrated by
figure 8.

 reduction reduction

 reverse reduction

Figure 8. Cycle detection

The time complexity of the ordering algorithm can be
determined as follows: define the depth d of a graph as
equal to the maximum number of arcs of any simple path
and N as the number of arcs. The number of reduction
steps is proportional to d and normally each iteration step
will reduce the number of relevant arcs with N/d (the worst
case is a reduction of only one arc). The time complexity is
therefore O(dN). The worst-case performance is O(N2),
also for cycle detection. The time complexity of the
ordered recursive calculations is O(N). These estimates are
confirmed by measurements [10].

Conclusion

An efficient algorithm for recursive data processing in
directed graphs has been presented. The technique of
graph reduction instead of expansion is reliable because it
can also detect cycles. It does not affect the existing
database contents and is based on semantic query
processing. Time complexity of recursive queries can be
reduced to O(dN), which means that the query exe cution
time becomes predictable. This is especially important for
open environments as the Internet, where systems cannot
be protected by authorization tables and where querying
by unknown users may not lead to denial of service.

References

 [1] D.A. Bailey, Java structures: Data structures in Java
for the principled programmer, MacGraw-Hill, Boston,
(1999).

[2] F. Bancilhon and R. Ramakrishnan, An amateur's
introduction to recursive query processing strategies,
Proceedings 1986 ACM SIGMOD International
Conference on Management of Data, Washington
D.C. (1986), 16-52.

 [3] J. Bang-Jensen and G. Gutin, Digraphs: Theory,
Algorithms and Applications, Springer-Verlag,
London, (2001).

[4] S. Dar, R. Ramakrishnan, A performance study of
transitive closure algorithms, ACM SIGMOD Record,
Vol. 23, No. 2 (June 1994), 454-465.

[5] M.R. Garey and D.S. Johnson, Computers and
intractability: A guide to the theory of NP-
completeness, W.H. Freeman, New York (1979).

[6] A. Karayiannis and G. Loizou, Cycle detection in
critical path networks, Information Processing Letters,
Vol. 7, No. 1 (January 1978), 15-19.

 [7] J.C. Molluzzo, A first course in discrete mathematics,
Wadsforth, Belmont CA, (1986).

 [8] J.H. ter Bekke, Semantic data modeling, Prentice Hall,
Hemel Hempstead (1992).

[9] J.H. ter Bekke and J.A. Bakker, Content-driven
specifications for recursive project planning
applications, Proceedings International Conference
on Applied Informatics (AI 2002), Innsbruck (2002),
448-452.

[10] J.H. ter Bekke and J.A. Bakker, Recursive queries in
product databases, Proceedings Fifth International
Conference on Flexible Query Answering Systems
(FQAS 2002), Lecture Notes in Artificial Intelligence
Vol. 2522, Springer-Verlag, Berlin (2002), 44-55.

