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Abstract

The semantic abstractions classification, aggregation and generalization are extremely useful for modeling
complex situations containing time-independent events. This paper shows that they also can be used successfully
for modeling of successive events. Here, two situations can be considered: ordering and sequencing. Both will
be illustrated with practical examples on workflow and version/configuration management. The solutions do not
require special constructs and can therefore be implemented in any programming environment.
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1 Introduction

The semantic abstractions aggregation and generalization
appeared for the first time in the database literature in a
series of papers by Smith and Smith [11, 12, 13]. These
abstractions are considered to be suitable for modeling
complex situations in which different types of relation-
ships occur. Because of their nature, they are especially
useful for modeling hierarchical relationships. Many
examples can be found in literature. Considering these
application areas, only minor differences can be
discovered between semantic data models and other data
models (e.g. relational and entity-relationship data
models). This is not a surprise: earlier hierarchical and
network data models already enabled us to find solutions
for such situations.

The advantages of generalization appear especially in
situations with many irregularities, alternatives or
exceptions. These new aspects were not fully covered by
other data models. It gave semantic models a clear
advantage over other existing data models.

In this paper the advantages of semantic abstractions
are further extended. Although semantic concepts enable
us to create data models for ordering and sequencing,
they are hardly mentioned in literature. This is also
caused by the difficulties data models have with
modeling time aspects. It is also illustrated with the
phrases is-part-of and is-a, in other data models often
used instead of aggregation and generalization. The
general need for this extended functionality appeared also
in papers discussing characteristics that must be satisfied
by the next generation of database systems [4, 10].

Sequencing is also important in the area of object

oriented databases. Examples can be found in literature
[e.g. 1, 3, 5, 7, 8, 17]. However, often extended entity-
relationship diagrams, flow diagrams or event-condition-
action diagrams are used for the purpose. These specifi-
cations are far from complete; they must be accompanied
with many informal procedural descriptions. These
specifications/descriptions are inadequate for develop-
ment of the required software.

Several commercial products support some form of
version management (for example: Objectivity/DB,
Itasca, ObjectStore, Ontos and Versant). However, a
standard set of features for version management is
lacking [3, 6].

This paper presents extensions in the usage of
semantic abstractions. Both aggregation and generali-
zation can be used for modeling ordering and sequenc-
ing. Because time is involved, also the phrases was-part-
of and was-a should be used in stead of only the phrases
is-part-of and is-a. The new opportunities will be
illustrated with several practical examples.

The resulting high-level specifications can be used for
standardization purposes. They can be implemented in
any programming environment (e.g. C or C++) or data-
base environment (e.g. relational or object oriented).

For a better understanding of the opportunities, first
a short introduction to the underlying semantic concepts
[14] is given.

2 Abstractions

This section contains a global overview of the concepts
for semantic data modeling using well-known examples.
Each object will be visualized explicitly by clearly
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distinguishing between identification and descriptive
properties. The resulting data models gain in semantic
contents as a consequence, while ambiguities and contra-
dictions in the specification are avoided. Only three
fundamental abstraction types with clear graphical
equivalences in the structural diagrams are required to
guarantee inherent semantic integrity. They make use of
the fundamental type-attribute relationship.

The real world is described by considering types of
relevant objects, a type being defined as a fundamental
notion. The abstraction leading to a type is called
classification. The examples (i.e. instances) occurring in
a database and required for the recognition of a type are
purely illustrations of the concept. The type is not being
defined hereby. Types are represented by rectangles in
diagrams, see figure 1. The counterpart of classification
is called instantiation.

vehicle

Figure 1: Classification

Aggregation is defined as the collection of a certain
number of types in a unit, which in itself can be
regarded as a new type (note the analogy with the mathe-
matical set concept). A type occurring in an aggregation
is called an attribute of the new type.

Aggregation allows view independence: we can
discuss the obtained type (possibly as a property) without
referring to the underlying attributes. By applying this
principle repeatedly, a hierarchy of types can be set up.
An example is given in figure 2. Normally the hierarchy
contains only aggregated types.

Aggregation is indicated by a line connecting the cen-
ters of two facing rectangle sides, while the aggregate
type is (according to its definition) placed above its
attributes. Of course, aggregation also has its counterpart:
the description of a type as a set of certain attributes is
called decomposition.

transport

vehicle destination

Figure 2: Aggregation hierarchy

A type is defined by listing its attributes, so we could
have the following type definitions:

type transport = vehicle, destination,
delivery_date, cargo.

type vehicle = manufacturer, model, price, fuel,
construction_year.

type destination = client_name, address, city,
telephone number.

An example to illustrate the database contents is table 1.

transport vehicle destination delivery_ cargo
date

t1 v1 d2 19961206 paper
t2 v3 d4 19961207 milk

Table 1.

Type definitions carry semantics; they contain the
essential properties (e.g. uniqueness of the identifications
t1 and t2 in the table above) and essential relationships
(the related vehicles v1 and v3 and the related
destinations d2 and d4 must occur in related tables).
Aggregation can be described using the verb to have.
According to the above type definition, a vehicle has a
manufacturer, model, price, fuel and construction_year.
Identifications are properties denoted by type names (see
table 1 above). This interpretation implies singular
identifications. Attributes (not types!) may contain roles.
An example is ’construction_year’ related to type ’year’.
Roles are separated from the type by an underscore.
Spaces are irrelevant in type definitions.

The third kind of abstraction, important to conceptual
models, is called generalization; it is defined here as the
recognition of similar attributes from various types and
combining these in a new type (note the analogy with the
intersection operation from mathematical set theory). We
can equally discuss the new type without mentioning the
underlying attributes, and it can in itself again serve as
a property (i.e. it allows view independence).

Example: consider manufacturer, model, price, fuel,
construction_year, cabin, weight, wheels, power and
coupling. The corresponding type is truck. Consider, in
addition, manufacturer, model, price, fuel, construction_
year, chassis, seats and color, where the type might be
car.

The common attributes of the two types are:
manufacturer, model, price, fuel, construction_ year. If
required, these attributes result in a new type ’vehicle’,
which may be regarded as the generalization of truck and
car. Generalization can be represented in abstraction
hierarchies, as we have seen in the case of aggregation.
This is shown in figure 3.

car

truck

vehicle

Figure 3: Generalization hierarchy

In abstraction hierarchies, generalization is schematically
represented by a line connecting facing corners of
rectangles, the generalized type being placed below the
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specialized ones. Generalization’s counterpart (i.e. the
union of attributes from different types) is called
specialization.

In figure 3 we placed truck and car one behind the
other, while only one line connects to vehicle. This is the
usual representation of disjoint specializations - i.e. a
vehicle can be either a truck or a car, but not both. The
combination of a group of disjoint specializations is
called a block, so truck and car constitute a block. Not
all vehicles need to be specialized; an example would be
a motorcycle occurring only as instance of vehicle.

The generalization, together with the attributes to be
added to it, is (by definition of the concept) described in
the type definition of the specialization. So the type
definitions are:

type vehicle = manufacturer, model, price, fuel,
construction_year.

type truck = [vehicle], cabin, weight, wheels,
power, coupling.

type car = [vehicle], chassis, seats, doors.

An example of the database contents is given in table 2.
This structure imposes uniqueness of attributes related to
generalizations. Besides that, values for these attributes
may occur only once in a block (i.e. v1 and v3 may not
occur as values in the corresponding truck table).

car [vehicle] chassis seats doors

c1 v1 self-contained 4 5
c2 v3 separate 2 2

Table 2.

Generalization is commonly associated with the verb
to be. According to the above type definitions, a truck is
a vehicle with cabin, weight, wheels, power and
coupling, while a car is a vehicle with chassis, seats and
color. The introduction of new identifications for
specializations (e.g. c1 and c2 above) makes generali-
zation hierarchies nontransitive dependent [9].

The introductory definitions of aggregation and
generalization above have already clearly demonstrated
the hierarchical character of these abstractions. This will
be elaborated in the following sections with an emphasis
on ordering aspects.

3 Ordering

Consider the relationship between employees and their
manager in an organization. The aggregation hierarchy in
figure 4 would be appropriate in case each employee has
exactly one manager. This structure corresponds with the
following type definitions:

employee

manager

Figure 4: Simple ordering

type manager = name, address, city, salary.
type employee = name, address, city, salary,

manager.

The aggregation hierarchy imposes a natural ordering on
the data: each employee has one manager, so a manager
must exist before employees can be assigned to the
manager. This ordering is imposed by the aggregation
structure and can also be used in rules or constraints. For
example, consider a salary constraint such that
employees earn less than their manager. This can simply
be formulated as follows:

assert employee its salary constraint (true) =
salary < manager its salary.

We consider now the more general situation in which not
just two levels but any number of aggregation levels are
concerned. The situation requires a recursive solution as
given in figure 5.

employee

Figure 5: Recursive ordering

The recursive hierarchy requires only one type definition
as follows:

type employee = name, address, city, salary,
manager_employee.

Because the top manager has no predecessor, the value
for manager_employee must here be NULL or another
default value. Constraints are now similar. For example
the previous salary constraint is formulated as follows:

assert employee its salary constraint (true) =
manager_employee = NULL or
salary < manager_employee its salary.

This recursive hierarchical structure can also be used for
ordering. Suppose a software project results in an
ordering of different versions of software modules. A
similar structure can be used in this case. For example,
the following type definition could satisfy in case each
version has one predecessor:
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type version = description, completion_date,
previous_version.

This structure permits successive versions of software:
each version has one predecessor and may have several
successors. An additional constraint could now be:

assert version its time constraint (true) =
previous_version = NULL or
completion_date >
previous_version its completion_date.

4 Sequencing

Specialization can be used in case of a number of
successive events. This section contains an example to
illustrate the use of abstractions to offer an effective
means of progress control.

Suppose data about software projects must be regis-
tered. A project can be in one of the following stages:
• open: it is defined and can be started;
• ongoing: an employee has been assigned;
• completed: it is terminated with a report.

In each stage a number of properties must be registered.
At the end it must be possible to evaluate the progress of
the whole project from start to completion. The first
alternative for this situation is to create one single type
in which all (present and future) properties are registered.
This type definition looks as follows:

type project = subject, employee, start_date,
completion_date, report_title, assessment,
reviewer, stage.

This solution has a number of drawbacks:
• some attributes have no meaning in certain stages, for

example: what is the meaning of assessment in an
ongoing project?

• some attributes receive different meanings in different
project stages, for example: start date is a planned
date for an open project while at completion stage it
is a realized date.

• some attributes receive a meaning at the same time,
for example: report title and assessment are registered
at completion time, before completion they have no
meaning.

A better solution is found using specialization. According
to the different stages it is obvious to distinguish
between: (open) project, ongoing project and completed
project. Ongoing project and completed project can be
considered as disjoint specializations of project. This
results in figure 6. The following type definitions
correspond with this figure:

type project = subject, planned start_date.
type ongoing project = [project], start_date,

planned completion_date, employee.

completed
project

ongoing
project

project

Figure 6: Preliminary sequencing

type completed project = [project], start_date,
completion_date, employee, assessment,
reviewer, report_title.

This solution still offers the possibility of registration of
attribute values without meaning. Both ongoing and com-
pleted project have the property of being a project, and
a project cannot be both ongoing and completed at the
same time. However, a project can only be completed
when it first has been removed as ongoing project (they
are mutually disjoint specializations). This solution has
therefore certain disadvantages:
• certain attributes must be transferred from ongoing to

completed project (for example: start_date and em-
ployee);

• parts of the history are removed by transfer of data
(for example: planned completion date).

The recognition of the relationship between open and on-
going project resulted in an improvement. The
relationship between ongoing and completed project is
analogous to this. A better alternative consists of a
structure in which completed project is considered as a
specialization of ongoing project. Historical data on
attributes of ongoing project do not disappear anymore.
This solution is presented in figure 7.

completed
project

ongoing
project

open
project

Figure 7: Final sequencing

The corresponding type definitions are now:

type open project = subject, planned start_date,
stage.

type ongoing project = [past_open project],
start_date, planned completion_date,
employee.

type completed project = [past_ongoing project],
completion_date, assessment, reviewer,
report_title.

The solution above has certain advantages:
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• the complete history of the project can be determined
at any time;

• there are no attributes without meaning, every
attribute receives its meaning at the right moment;

• the order of events is completely determined by the
given structure;

• transfer of data from one type to another type is no
longer necessary, data from earlier stages are
accessible from later stages.

This modeling of events is therefore preferred in case of
a fixed number of successive events. Specialization is
still related to the verb to be. However, now we have to
use the was-a phrase instead of the is-a phrase. So a
completed project was an ongoing project and an
ongoing project was an open project.

In case an unknown number of project stages is
involved, the recursive solution of figure 8 would be
appropriate.

project
stage

Figure 8: Recursive sequencing

The corresponding type definition could be:

type project stage = [previous_project stage],
subject, employee, report, start_date,
completion_date.

This recursive solution is generally not allowed in object
oriented data models [2]. Although inheritance of struc-
ture and data is still a relevant matter, the inheritance of
methods appears to be nonsense because it is not useful
to inherit something that is already encapsulated.

5 Version management

Previous simple cases can be used as a starting-point for
more complex models in which both ordering and
sequencing occur. Consider for example data about
ongoing software projects. Software projects start with a
design stage in which functionality and feasibility of the
new product are studied. Such a design stage results in
a report in which details about the required software
modules are described. Each software module has to
perform a certain task and together these modules form
a configuration of the product. In case of a positive
assessment and a management commitment, the next
project stage can be initiated. A team is created that will
realize the product. In this stage, several prototypes
(versions) of the software modules are developed.
Versions can be evaluated and result in improvements
based on earlier versions. Finally, when a configuration
meets all requirements, it can be released as a new

product. In that situation a maintenance team keeps
responsibility for the product. In between, developers can
still work on new versions that may lead to other new
releases and so on.
From the foregoing description can be concluded that the
following major project stages can be distinguished:
• design: a team is created to study functionality and

feasibility, this stage can be split up into the
substages ’start design’ and ’completed design’ if
desired;

• realization: a team is created to construct the desired
product, this is considered as a continuous process;

• maintenance: a team is created that will be
responsible for maintenance of the product, also this
stage can be split up into the substages ’start mainte-
nance’ and ’completed maintenance’ if desired.

These stages can be modeled using the previous project
sequencing example (see figure 7).

Several versions of the product appear during realization,
it implies usage of previous ordering example, i.e.:

type version = description, realization stage,
state, previous_version.

The type version has the following attributes: description,
realization stage (containing a reference to the realization
stage of the project), state (indicating the state in which
the version occurs: transient, working or released) and
previous_version (indicating the relationship with its
predecessor). However, in this case an additional
complication may occur. The earlier ordering solution
allows only several successors of one single version (i.e.
branching versions) but not one single successor of
several versions (i.e. merged versions). An example is
figure 9.

x2
configuration configuration

c1 c2

x1 x3 x5 x-module

x4

y1 y2 y3 y-module

z2

z1 z3 z-module

Figure 9: Version histories
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The corresponding database contains at least the relation-
ships of table 3 for versions in figure 9.

version ..... previous_version

x1 . NULL
x2 . x1
x3 . x1
x4 . x1
x5 . x3
y1 . NULL
y2 . y1
y3 . y2
z1 . NULL
z2 . z1
z3 . z1

Table 3.

It is clear that situations occurring in the y-module and
z-module (i.e. strict sequential ordering and branching)
are allowed by the recursive structure. However merging,
as occurring in the x-module (x2, x3 and x4 resulting in
x5), is not allowed. So the solution requires an extension.
The following alternatives can be considered (see figure
10).

relationship merging

version version

alternative a alternative b

Figure 10: Alternatives for merging

These two alternatives have certain characteristics:

a. type relationship = previous_version,
next_version.

This solution is most obvious and ignores the
required ordering. This type definition allows not
only useful but also useless combinations (e.g.
combination (x5, x1) in figure 9). This problem can
be left to the responsibility of the user. An alternative
is to implement many complex constraints to restrict
this collection of relationships to only useful ones.

b. type merging = [previous_version],
merged_version.

This type definition allows each version to have more
than one previous version, with the restriction that
each version can occur at most once in a merging.
Besides that, both previous_version and merged_
version must already occur in the database (referen-

tial integrity). The following constraint prevents that
version relationships (by attribute previous_version)
occur in both version and merging:

assert merging its uniqueness (true) =
previous_version ≠
merged_version its previous_version.

This type definition accepts now only those relation-
ships that caused the merge and not those already
occurring in the version table. So, the corresponding
database for figure 9 contains the data of table 4.

merging [previous_version] merged_version

m1 x2 x5
m2 x4 x5

Table 4.

The remainder of this problem has to do with the
modeling of configurations. Again, two alternatives can
be considered (see figure 11).

occurrence configuration

version configuration version

alternative a alternative b

Figure 11: Configuration alternatives

The relevant type definitions are now as follows:

a. type occurrence = version, configuration
This structure represents an n to m relationship
between configuration and version, so a version may
occur in several configurations and a configuration
consists of several versions. This is a weak reflection
of the restrictions in reality because:
- not each number of versions is allowed in a con-

figuration (e.g. in figure 9 exactly three different
versions);

- not each combination of three versions is allowed
in a configuration (e.g. the combination x1, x2
and y3 in figure 9 is not allowed).

Many complex constraints must be imposed on this
structure to prevent these situations.

b. type configuration = x_version, y_version,
z_version.

This structure fits perfectly for the example in figure
9. Additional constraints are also very easily imposed
on this simple structure. For example, to be sure that
all versions are in the working state (i.e. become
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visible to other users) simple constraints like the
following are required:

assert configuration its x_working (true) =
x_version its state = "working".

A representation for the previous configurations
(including the ordering relationship between configu-
rations) results in table 5.

config- x_ y_ z_ previous_
uration version version version configuration

c1 x1 y1 z1 NULL
c2 x5 y3 z3 c1

Table 5.

Finally, a release is a special configuration in the sense
that it is supported by a maintenance team. Release can
therefore be considered as a specialization of configu-
ration. So we have also:
• configuration: prototype of the product with prede-

cessor. All versions become visible to other users;
• release: final prototype of the product turned over to

a maintenance team. All versions in a configuration
are frozen for use.

This leads to the global structure of figure 12. With this
structure correspond the following type definitions:

type design stage = project_name, start_date,
study_team, report, assessment.

type realization stage = [past_design stage],
development_team, start_date.

type maintenance stage = [past_realization stage],
maintenance_team, start_date.

type version = description, realization stage,
state, previous_version.

type merging = [previous_version],
merged_version.

type configuration = x_version, y_version,
z_version, previous_configuration.

type release = [configuration], maintenance stage,
release_date.

Discussion

Although the global structure in figure 12 may look self-
evident, it needs further explanation. Consider the model-
ing of version. Each version has a relationship with the
realization stage. Versions also have an ordering relation-
ship (from the attribute previous_version). Because of
these two relationships, the structure above allows
different values for realization stage in case of successive
versions. This is not acceptable and to prevent this, the
following additional constraint is needed:

release

configuration

merging

version

maintenance
stage

realization
stage

design
stage

Figure 12: Project management

assert version its correct realization (true) =
previous_version = NULL or
realization stage =
previous_version its realization stage.

Another situation occurs frequently in data models. It is
caused by multiple inheritance paths between different
types. Consider the type release in figure 12. Release has
two different paths leading to realization stage. The path
from realization stage to maintenance stage is needed to
assure that the release will be turned over to the
maintenance team. It is evident that in both cases the
same realization stage is referred to (note that this is not
generally the case). This implies that constraints like the
following must be added to the structure:

assert release its x_allowed (true) =
configuration its x_version its realization stage =
maintenance stage its realization stage.

Simple constraints like the following are needed to
require that all versions are frozen for use by others:

assert release its x_frozen (true) =
configuration its x_version its state =
"released".

An advantage of the semantic hierarchy has been illus-
trated with this complex example. Because the position
of a type in the abstraction hierarchy is completely
determined by the role in aggregation/generalization
definitions, derivable relationships are immediately
visible. It is therefore very simple to add necessary con-
straints using these derivable relationships. A data model
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without constrained hierarchies would make it much
more difficult to find additional constraints.

Implementation

The semantic structure determines the basic functionality
for sequencing and ordering in an application environ-
ment. All concepts in the semantic structure (for example
in figure 12) can be implemented using simple file
structures (c.f. foregoing tables). It is evident that it must
be possible to create, destroy and modify instances in
these files. The explicit presence of all concepts in the
semantic structure facilitates implementation. Inherent
constraints (uniqueness and valid references) must be
added to each operation. All other constraints must result
in triggered procedures that must be incorporated into
these operations. In a relational database environment
this can be realized by using the concepts of primary,
foreign and candidate key; in an object oriented database
environment constraints can be incorporated in object
methods. Methods can also be used for further tailoring
to the needs of the user’s environment. Query languages,
screen generators and browsers can provide traversal of
the underlying relationships.

6 Conclusion

It has been demonstrated that the semantic abstractions
classification, aggregation and generalization are suitable
for modeling event ordering and sequencing. Necessary
constraints result in small pieces of additional software.
This has certain advantages over a procedural approach.

Exact, high-level and unambiguous specification of
ordering by means of data model relationships leads to
meta information which enables a database management
system to derive the required checks. This specification
of ordering concepts can also be used for standardization
purposes. These properties make semantic data models a
candidate for usage in the next generation of database
management systems. The experimental Xplain system
[15, 16] has already demonstrated many of these
advantages.
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