
Proceedings of the IASTED International Conference
APPLIED INFORMATICS
February 18-21, 2002, Innsbruck, Austria

CONTENT-DRIVEN SPECIFICATIONS FOR RECURSIVE
PROJECT PLANNING APPLICATIONS

J.H. TER BEKKE and J.A. BAKKER
Faculty of Information Technology and Systems, Delft University of Technology

Mekelweg 4, 2628 CD Delft, The Netherlands
email: {j.h.terbekke, j.a.bakker}@its.tudelft.nl

ABSTRACT

This paper presents new effective solutions for critical
path applications for directed acyclic graphs. We demon-
strate that it is possible to solve these recursive problems
using a data model without nested structures and a
content-driven query language without explicit recursion,
iteration, nesting or navigation. These solutions do not
require the specification of unique start or finish nodes of
the acyclic graph, which is important when data about arcs
and nodes come from external sources, as might be the
case in open Internet applications. The solutions do not
require routing and graph depth specifications. This
content-driven character of the solutions therefore makes
the approach also suitable for end users.

KEYWORDS: critical path, reachability, recursion,
query language, transitive closure, expressive power.

1. INTRODUCTION

Recursion is an important subject in computer science; it
is studied in almost every branch. The terms transitive
closure and reachability denote a well-known application
area of recursion. Numerous examples of applications can
be given where data-driven recursion plays a role. A
global overview includes a wide range of research subjects
ranging from databases (deductive, object oriented and
distributed databases, etc.), compiler design, artificial
intelligence and discrete mathematics to numerous practi-
cal applications as: bill of materials, project planning,
inheritance graphs. Most proposed solutions are based on
mathematical models in which directed graphs play an
important role. However, they are implemented as com-
puter package applications and not incorporated in the
concepts of a declarative query language for database
access by end users [7].

The subject of recursion is in the database area often
limited to logical deduction only and it is generally not
found in textbooks on databases, probably because
relational algebra is not suitable for the formulation of
recursion. During the 1980s therefore, a lot of research
was conducted on nested relations. One of the goals was

to find a declarative solution for recursive problems.
However, in [10, 12] it is proven that nested algebra
specifications do not offer practical solutions because of
the exponential space required to compute the transitive
closure. Some researchers think that an object-oriented
database is the only way out for these applications because
a procedural solution would be needed. However, even in
textbooks on object-oriented databases (where the subject
could be expected), these recursive applications hardly
appear. The subject is always prominently present and is
in fact indispensable for any textbook on the fundamentals
of computing (see for example [1, 9]). Only recently
certain forms of logical deduction were proposed for
relational databases. SQL3 [18] contains new solutions,
similar to graph-theoretical solutions, supporting logical
deductive problem specifications. These extensions are
derived from recursive Datalog rules [8].

In theory there are many advantages to declarative
query language constructs. These advantages already hold
for non-recursive problems:
• declarative queries are reliable, simple and short

because they emphasize the 'what' and not the 'how'
of problem solving;

• it is easy to determine the correctness of declarative
queries;

• declarative specifications do not contain explicit
recursion, iteration, nesting or navigation;

• declarative queries support ad-hoc querying; it is not
necessary to determine the applications to be used
beforehand.

As a consequence of our objective to offer a declarative
query facility supporting recursion, we have to design the
data model such that nodes and their possible connections
(called arcs) are specified explicitly. Otherwise nodes and
arcs cannot be addressed. Consequently the required data
structure for graphs is less simple, although not really
complex, compared to conventional solutions where an arc
is defined implicitly through two nodes.

The used semantic data model and language are based
on only simple structures, i.e. not ones that are nested.
The syntax and semantics of the language is defined and
extensively applied in [13]. More complex applications of
semantic data modeling principles for Internet search

351-254 448



engines, data distribution, I/O parallelism, meta modeling
and version management can be found in [3, 4, 5, 15, 16].
Practical advantages of semantic data modeling principles
can also be found in [17]. A survey of the principal
semantic abstractions is given in [11]. A conversion tool
for several popular relational DBMSs is introduced in [6].

The paper is organized as follows. In section 2 a
summary is given of the most important modeling
concepts of the Xplain data model. This summary is
tailored to the critical path problem. Because we are
primarily interested in solving practical problems, we
introduce the critical path problem by means of a simple
project plan for the construction of a shopping center. In
section 3 some queries are given. They have been imple-
mented and tested with data collections representing
acyclic and cyclic graphs of various depths for which we
have used the Xplain DBMS, version 5.6.

Figure 1: Project activities

2. ABSTRACTIONS

This section contains an overview of the concepts for
semantic data modeling that are needed for the project
planning applications. Each object will be visualized
explicitly as we clearly distinguishing between identifi-
cation and descriptive properties. Consequently the
resulting data models gain in semantic content, while
ambiguities and contradictions in the specification are
avoided. Only three fundamental abstraction types with
clear graphical equivalencies are required to guarantee
inherent semantic integrity. These abstractions make use
of the fundamental type-attribute relationship.

The real world is described by types (categories) of
relevant objects, a type being defined as a fundamental
notion. The abstraction leading to a type is called
classification. The instances occurring in a database and
triggering the recognition of a type are purely applications
of the concept; the type is not defined by these instances.
Types are represented by rectangles in diagrams. The
opposite of classification is called instantiation.
Aggregation is defined as the collection of a certain
number of types into a unit, which can be regarded as a
new type. A type occurring in an aggregation is called an
attribute of the new type. It is important to note the
analogy with the mathematical set concept: attributes are
considered as 'elements' of a type.

Aggregation allows view independence: we can

discuss the obtained type (possibly as a property) without
referring to the underlying attributes. By applying this
principle repeatedly, a hierarchy of types can be set up.
An example of a hierarchy depicting two arcs between two
types is given in figure 2. Normally only composite types
are represented in the visualization of the abstraction
hierarchy.

If a line connects two facing rectangle sides while the
aggregate type (according to its definition) is placed above
its attributes, this indicates aggregation. Of course, the
reverse of aggregation also exists: the description of a type
as a set of certain attributes is called decomposition.
Decomposition of a type will eventually lead to some base
types. In our example database we consider the two types
'description' and 'days' as base types. A type is completely
defined by a list of attributes, so we could apply the
following type definitions to the activities and the
prerequisite relationships shown in figure 1:

type activity = description, days.
type prerequisite = pre_activity, cur_activity.

prerequisite

pre cur

activity

Figure 2: Aggregation hierarchy

Some instances of the project database of figure 1 are
given in table 1 and table 2.

activity description days

A Obtaining building licence 120
B Access-road construction 180
C Drilling-machine installation 3
D Set up managerial offices 30
E Preparation of building area 60
F Waterworks installation 90
G Driving piles 240
H Building the shopping center 180
I Electricity, sewerage 30
J Accommodation for management 240
K Workmanship 360
L Parking, air conditioning 240

Table 1: Activities

prerequisite pre_activity cur_activity

P1 A B
P2 B C
P3 B D
P4 B E
P5 D F
P6 C G
P7 D G
P8 G H
P9 E H
... ... ...
P17 H K
P18 J L
P19 H L

Table 2: Prerequisites

449



Type definitions carry inherent semantics; they contain the
essential properties (e.g. uniqueness of the identifications
A, B, C, etc. in the activity table) and essential rela-
tionships (e.g. interdependent activities A, B, C, D, etc.
mentioned under prerequisite must occur in the related
activity table). Aggregation can be described using the
verb to have. According to the above type definitions, an
activity has a description and a duration (days), and a
prerequisite has a current activity (cur_activity), and a
previous activity (pre_activity). The delay between the
start of two successive activities is subjected to the
following constraint: delay ≥ pre_activity its days (see
figure 3).

previous activity current activity

days

delay

Figure 3: Duration and minimum delay

Identifications are properties denoted by type names (see
table 1 above). This interpretation implies singular identi-
fications. Attributes (not types !) may contain roles.
Examples are cur_activity and pre_activity related to type
activity. Roles are syntactically separated from the type by
an underscore. Roles can be added to the aggregation
connections, see figure 2.

The third kind of abstraction which is important to
conceptual models is called generalization; here we define
it as recognizing similar attributes in various types and
combining them in a new type (note again the analogy
with the intersection operation from mathematical set
theory). We can equally discuss the new type without
mentioning the underlying attributes, and the type in itself
can again serve as a property in the definition of another
type (i.e. it allows view independence). Generalization
does not occur in our data model for project planning
applications.

3. APPLICATIONS

Several queries can be presented to illustrate declarative
query specifications on acyclic graphs. This section
contains a few of them in order to illustrate the concepts
of data manipulation in this context. Each query example
starts with a title and a short description. Then the formal
query specification is followed by the result on our project
planning database. Finally, where necessary, an explana-
tion is given of each line in the query.

Query 1: Critical activities
A certain minimal period is needed to complete all activi-
ties in the construction of the shopping center. This period
is determined by the contents of our project planning
database. The problem is split in two simple problems, as
follows (see also [9]). Find for each activity its minimal

preparation time (mpt). The longest path caused by all its
prerequisite activities determines the starting time.
Similarly we can determine for each activity its starting
time before completion of all its successor activities (sbc).
Critical activities have no tolerance: they have a maximal
sum of minimal preparation time and latest starting time
before completion. A prerequisite’s minimal delay caused
by the activity that precedes it is defined first.

extend prerequisite with delay = pre_activity its days. (1.1)
extend activity with mpt = 0. (1.2)
cascade activity its mpt = (1.3)

max prerequisite its pre_activity its mpt + delay (1.4)
per cur_activity. (1.5)

extend activity with sbc = days. (1.6)
cascade activity its sbc = (1.7)

max prerequisite its cur_activity its sbc + delay (1.8)
per pre_activity. (1.9)

value spp = (1.10)
max activity its mpt + sbc. (1.11)

get activity its description, mpt, sbc (1.12)
where mpt + sbc = spp (1.13)
per mpt. (1.14)

Result:

activity description mpt sbc

A Obtaining building licence 0 1170
B Access-road construction 120 1050
D Set up managerial offices 300 870
G Driving piles 330 840
J Accommodation for management 570 600
K Workmanship 810 360

Explanation:
(1.1) The minimal delay caused by the preceding

activity is added to the definition of prerequisite.
(1.2) Type activity is extended with temporary attribute

'mpt' (minimal preparation time). The value for
this attribute is initialized with zero for all
activities (the starting point is not known before-
hand so all activities may start immediately).

(1.3) The cascade update statement must be used in the
case of a dependency between source and target
instances. The extend statement cannot be used
because of the dependency between source and
target.

(1.4) The required topological ordering is clear: the
value for mpt in a activity instance related to
attribute pre_activity is used to calculate the
maximum value of mpt in an instance related to
attribute cur_activity of prerequisite. So the
maximum of the related pre_activity instance (i.e.
pre_activity its mpt) must already exist. This
implies that processing must start with basic
activities (their maximum is already known
because of the initialization).

(1.6) Type activity is extended with a temporary attrib-
ute 'sbc' (start before completion). Each activity
must start before completion of the project. The
last activity is not known beforehand.

450



(1.7) The cascade statement is needed again, but now
in the opposite direction.

(1.10) The shortest path period (spp) is determined by
the maximum value for the addition.

(1.12) The result should contain the identification
(which is always given) and the specified attrib-
utes, including the derived attributes.

(1.13) Only activities in the critical path are required in
the result.

(1.14) Because the ordering in the result is unknown, a
sorting criterion is specified. Here we sort on
ascending mpt values (-mpt in the case of de-
scending order of mpt).

It is clear that the cascade statement is indispensable for
recursive applications. Its general form is:

cascade <subtype> its <cascade attribute> =
<function> <maintype> its <expression>
per <grouping attribute>.

The following constraints regarding this statement must be
satisfied:
• <expression> must contain the <cascade attribute>,

this can be determined during the automatic parsing
process of the query statement. The reference of
<cascade attribute> in <expression> (for example:
cur_activity) must differ from the reference in the
<grouping attribute> (for example: pre_activity). In
the case this condition is not satisfied, the statement
should be considered as a normal update statement
without prescribed ordering;

• the <grouping attribute> must be identical to
<subtype>, possibly with a role added;

• it is evident that all usual constraints hold, for exam-
ple: types, operations and functions must be applica-
ble and all attributes must occur in the corresponding
types;

• it is only necessary to create a list of arcs such that
the related <cascade attribute> value (related to a
node) occurs before the <grouping attribute> value
(also related to a node). This desired ordering can be
determined during the query parsing process;

• the <function> must be one of the available set
functions: total (for the sum of values), max (see
query 1), min (see query 2) or the logical function
any (see query 3).

Query 2: Minimal period between two selected activities
The previous example illustrated the max function in the
cascade statement. Now an illustration is given of the min
function. This example requires designation of the start
and finish activities for determination of the minimal path
period between these activities (here: D and L).

extend prerequisite with delay = pre_activity its days. (2.1)
value inf = 9999. (2.2)
extend activity with est = inf. (2.3)
update activity "D" its est = 0. (2.4)

cascade activity its est = (2.5)
min prerequisite its delay + pre_activity its est (2.6)
per cur_activity. (2.7)

extend activity with sbc = inf. (2.8)
update activity "L" its sbc = days. (2.9)
cascade activity its sbc = (2.10)

min prerequisite its delay + cur_activity its sbc (2.11)
per pre_activity. (2.12)

value spp = min activity its est + sbc. (2.13)
get activity its description, est, sbc, spp (2.14)

where est + sbc = spp and est ≠ inf and sbc ≠ inf. (2.15)

Result:

activity description est sbc spp

D Setup managerial offices 0 540 540
F Waterworks installation 30 510 540
H Building the center 120 420 540
L Parking, airconditioning 300 240 540

Explanation:
(2.4) Only for the starting activity D the earliest

starting time (est) is initialized with zero. Other
activities get the high value called inf.

(2.5) The minimal distance from the starting activity is
calculated using the min function.

(2.10) The minimal distance from the finishing activity
is calculated analogously

(2.14) An activity on the shortest path between the two
activities has the minimal sum of the values est
and mpt.

Query 3: Prerequisites of a selected activity
It can be useful to know the prerequisites of a selected
activity (here: G). A prerequisite can be found via
different connections in the database (the graph is
generally not a simple tree structure).

extend activity with pre = (false). (3.1)
update activity "G" its pre = (true). (3.2)
cascade activity its pre = (3.3)

any prerequisite where cur_activity its pre (3.4)
per pre_activity. (3.5)

get activity its description, days (3.6)
where pre. (3.7)

Result:

activity description days

A Obtaining building licence 120
B Access-road construction 180
C Drilling-machine installation 3
D Set up managerial offices 30
G Driving piles 240

Explanation:
(3.1) All instances will start with 'pre' extension

initialized with the logical value false.
(3.2) Activity G (i.e. the source) is the starting point of

the cascade statement.
(3.4) Attributes pre_activity and cur_activity of prereq-

uisite determine the order of processing. Attribute

451



’pre’ becomes true if any corresponding prerequi-
site exists which satisfies the given condition.

(3.6) The result consists of all prerequisites incl. the
source activity.

Other related queries:
In this section only a few examples of recursive applica-
tions have been given. An advantage of these content-
driven solutions is that they make it possible to reuse
specifications for similar queries; some examples have
been presented earlier in this section to illustrate this
aspect. A list of queries in this database could include also
the following queries:
• Critical prerequisites of a certain activity;
• Topological ordering of activities;
• Activities following a certain activity.

CONCLUSION

Simple declarative query language solutions have been
presented for the class of recursive problems on directed
acyclic graphs. By using two explicit semantic objects
(node and arc) instead of one explicit (node) and one
implicit (pair of nodes) we were able to specify easily
adaptable, reusable solutions for these problems without
explicit recursion, iteration, nesting, or navigation. These
declarative solutions do not require specification of unique
start or finish nodes of the acyclic graph, which is
important when arcs and nodes come from external
sources, as might be the case in open Internet applications.

REFERENCES

[1] V.S. Alagar, Fundamentals of computing: theory
and practice (Englewood Cliffs NJ, Prentice-Hall
Int., 1989).

[2] D.A. Bailey, Java structures: data structures in
Java for the principled programmer (Boston,
MacGraw-Hill, 1999).

[3] Bert Bakker and Johan ter Bekke, Foolproof
query access to search engines, Proc. 3rd Int.
Conf. on Information Integration and Web-based
Applications & Services (IIWAS 2001), Linz,
Austria, 2001, 389-394.

[4] J.A. Bakker, An extended meta model for
conditional fragmentation, Proc. 9th Int. Conf. on
Database and Expert Systems Applications
DEXA’98, Vienna, 1998, Lecture Notes in
Computer Science, 1460, 702-715.

[5] J.A. Bakker, Semantic partitioning as a basis for
parallel I/O in database management systems,
Parallel Computing, 26, Elsevier, 2000, 1491-
1513.

[6] Berend de Boer and J.H. ter Bekke, Applying
semantic database principles in a relational
environment, Proc. IASTED Int. Symp. Applied
Informatics (AI2001), Innsbruck, 2001, 400-405

(see also: http://www.pobox.com/~berend/
xplain2sql/index.html).

[7] T. Conally, C. Begg, A. Strachan, Database
systems: a practical approach to design, imple-
mentation and management (Reading Mass.,
Addison-Wesley, 2001).

[8] G. Gardarin and P. Valduriez, Relational data-
bases and knowledge bases (Reading Mass.,
Addison-Wesley, 1989).

[9] J.C. Molluzzo, A first course in discrete
mathematics (Belmont CA, Wadsforth, 1986).

[10] J. Paredaens, D. Van Gucht, Converting nested
algebra expressions into flat algebra expressions,
ACM Transactions on Database Systems, 17(1),
1992, 65-93.

[11] F. Rolland, The essence of databases (Hemel
Hempstead, Prentice Hall, 1998).

[12] D. Suciu, J. Paredaens, Any algorithm in the
complex object algebra with powerset needs
exponential space to compute transitive closure,
Proc. of the 13th ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database
Systems, 1994, 201.

[13] J.H. ter Bekke, Semantic data modeling (Hemel
Hempstead, Prentice Hall, 1992).

[14] J.H. ter Bekke, Complex values in databases,
Proc. Int. Conf. on Data and Knowledge Systems
for Manufacturing and Engineering, Hong Kong,
1994, 449-455.

[15] J.H. ter Bekke, Meta modeling for end user
computing, Proc. Workshop on Data and Expert
Systems Applications DEXA 1995, London, 1995,
267-273.

[16] J.H. ter Bekke, Semantic modeling of successive
events applied to version management, Proc. Int.
Symp. on Cooperative Database Systems for
Advanced Applications (CODAS ’96), Kyoto,
1996, 32-39; also in: Cooperative databases and
Applications (Singapore, World Scientific, 1997),
440-447.

[17] J.H. ter Bekke, Advantages of a compact
semantic meta model, Proc. 2nd IEEE Metadata
Conference, Silver Spring, 1997, http://www.
computer.org/conferen/proceed/meta97/papers/
jterbekke/jterbekke.html.

[18] J.D. Ullman and J. Widom, A first course in
database systems (Upper Sadle River NJ,
Prentice Hall, 1997).

452


