
Proceedings of the IASTED International Conference
APPLIED INFORMATICS
Symposium 1, Artificial Intelligence and Applications
Februari 19-22, 2001, Innsbruck, Austria

APPLYING SEMANTIC DATABASE PRINCIPLES IN A RELATIONAL
ENVIRONMENT

BEREND DE BOER1 AND J.H. TER BEKKE2

1NederWare, Peperstraat 29, 5311 CS Gameren, The Netherlands, berend@acm.org,
2Delft University of Technology, Zuidplantsoen 4, 2628 BZ Delft, The Netherlands, j.h.terbekke@its.tudelft.nl,

ABSTRACT

SQL generally allows several solutions to one single
problem. The reason for this is that SQL’s language
concepts lack orthogonality. Because more solutions are
allowed, SQL users are uncertain whether the specific
solution they chose is correct and performs well. This
paper presents a method to tackle this practical problem
by introducing the orthogonal semantic concepts from the
Xplain data language in the development phase of relation-
al databases. This conversion method results in unique,
consistent, well-performing and portable SQL definitions
and SQL queries. Over a period of several years, we
tested the approach extensively and applied it in practice,
for which we used databases and queries of different
complexities. The method proved to be time saving in
both design and implementation. This paper presents an
overview of the principles used in the automated tool for
converting safe Xplain into equally safe SQL.

Keywords: intelligent databases, query languages, data
models.

1. INTRODUCTION

The basic constructs of SQL are easy to learn. As users
move on to more advanced queries like joins or correlated
sub-queries, however the lack of orthogonality and the
abundance of pitfalls [3], [4], [10] can cause confusion.
These days there is a practical alternative, one that can
even be used in more phases of building information
systems. We advocate the use of Xplain [9], which with
the advent of a new tool that can create SQL from Xplain
statements has become quite practical. Xplain has both a
visual and textual component, as will be shown in the next
section. Both its visual and textual presentation are
extremely simple and can be explained in a matter of
minutes to any audience. Xplain does not offer the
multiplicity of relationships found in the information
modeling literature, but offers all possible cases with these
two relationships: aggregation and specialization (including
multiple inheritance) [7]. The visual side of Xplain does
not strain people’s cognitive abilities. It just offers easy
drawing and distinction of aggregation and inheritance. It
is practical to use Xplain when a certain exactness has to

be introduced during design or requirements analysis
phases. The visual model can be refined from high-level
business semantics to the semantic detail necessary for
information systems. The visual design can be coded
straightforwardly into the language of Xplain. The tool
presented in this paper, Xplain2sql, provides an additional
incentive to capture knowledge into semantic database
models, because this tool can transform these Xplain
statements into ANSI SQL and its many dialects. Both
data definition and data manipulation are supported. The
transformation process has built-in expert knowledge about
the targeted SQL dialect to produce optimal SQL code.
This paper is organized as follows. After a short
introduction on the semantic Xplain concepts, an overview
is given of the techniques used for converting semantic
definition and manipulation commands into SQL
equivalents. Also some insight in the implementation is
given. The last section includes an overview of the history
of the automated tool and gives information about some
practical application areas in which the system has been
used successfully.

2. XPLAIN CONCEPTS

In designing databases, a conceptual model is produced,
which consists of descriptions of relevant object types.
Abstraction is a vital concept in semantic databases; three
types are distinguished: classification, aggregation and
generalization. They make use of the fundamental type-
attribute relationship.

2.1 Classification

The real world is described by considering the properties
of relevant objects, where a property is defined as a
fundamental notion, but no value is assigned to it. The
abstraction leading to a property is called classification.
The examples (i.e. instances) occurring in a database and
required for the recognition of a property are purely meant
as illustrations. The property is not being defined hereby.
Properties are represented by rectangles in diagrams, see
figure 1 and figure 2. The counterpart of classification is
called instantiation.

2.2 Aggregation

Aggregation is defined as the collection of a certain

325-316 400

number of properties in a type, which in itself can be
regarded as a new property (note the analogy with the
mathematic.Ial set concept). A property occurring in an
aggregation is called an attribute of the type. An empty
type is called base. Aggregation allows view independ-
ence: we can discuss the obtained type (possibly as a
property) without referring to the underlying attributes. By
applying this principle repeatedly, we can set up a
hierarchy (in the sense of a network) of properties.
Examples are given in figure 1 and figure 2. Normally the
hierarchy contains only aggregated types. Aggregation is
indicated by a line connecting the centers of two facing
rectangle sides, while the aggregate type is (according its
definition) placed above its attributes. Of course,
aggregation also has its counterpart: the description of a
type as a set of certain attributes is called decomposition.
We define a type by listing its attributes, so we could have
the following type definitions:

sale

item

Figure 1. Aggregation

type item (A4) = description, stock, price.
type sale (A4) = week, day, item, number, amount.

Type definitions carry semantics; they contain the essential
properties and relation- ships. Aggregations can be
described by means of the verb to have. According to the
above type definition, an item has a description, stock and
price. Identifications are properties denoted by type names.
This interpretation implies singular identifications.
Attributes (not types!) may contain roles. An example is
‘item description’ related to type ‘description’. Roles are
separated from the type by an underscore.

2.3 Generalization

The third type of abstraction, important to conceptual
models, is generalization; it is defined here recognizing of
similar attributes from various types and combining these
in a new type (note the analogy with the intersection
operation from mathematical set theory). We can equally
discuss the new type without mentioning the underlying
attributes, and it can in itself again serve as a property (i.e.
it allows view independence). An example is adding the
type ‘invoiced sale’ to the foregoing definitions. This type
has all the attributes of type sale and additionally the
attributes: name, street, zipcode and city. The type
‘invoiced sale’ must therefore be conceived of as the
specialization of the type sale. In abstraction hierarchies,
generalizations are schematically represented by a line that
connects facing corners of rectangles, where the
generalized type is placed below the specialized ones. The

opposite of generalization is called specialization. The
generalization together with the attributes to be added to
it is (by definition of the concept) described in the type
definition of the specialization. So the type definition of
the specialization of sale is:

type invoiced sale (A4) = [sale], name, street, zipcode,
city.

Specializations are commonly associated with the verb to
be. According to the above type definitions, an invoiced
sale is a sale with name, street, zipcode and city.

invoiced sale

sale

Figure 2. Generalization

3. CONVERSION OF DEFINITIONS

The Xplain language has several commands for data
definition and data integrity. This section shows the
conversion of the base, type and init commands to SQL.
Our first complete semantic example (including base
types) is as follows:

base day (A3) ("Mon","Tue","Wed","Thu","Fri","Sat").
base week (I2).
base amount (R4,2).
base description (A13).
base stock (I4).
base price (R4,2).
base number (I4).
base name (A60).
base street (A60).
base zipcode (A10).
base city (A40).
type item (A4) = description, stock, price.
type sale (A4) = week, day, item, number, amount.
type invoiced sale (A4) = [sale], name, street, zipcode,

city.

3.1 Converting base commands

Depending on the capabilities of the target SQL
implementation, the base command is converted to a UDT
(User Defined Type) or not converted at all. When it is
not converted, the domain is simply remembered and used
wherever a base definition occ taturs in a type definition.
An example of this is shown in section 3.2. For example,
the conversion by Xplain2sql of the foregoing base
definitions into the InterBase SQL implementation results
in the following domain definitions:

create domain Tday as character(3) not null
check (value in (’Mon’, ’Tue’, ’Wed’, ’Thu’, ’Fri’, ’Sat’));
create domain Tweek as smallint;

325-316 401

create domain Tamount as float;
create domain Tdescription as character(13);
create domain Tstock as smallint;
create domain Tprice as float;
create domain Tnumber as smallint;

InterBase SQL also supports domain restrictions, see the
definition of domain Tday. The domain restriction output
is suppressed if the target SQL implementation does not
support them.

3.2 Converting type commands

The type command is converted into the SQL create table
statement. For example, the conversion of the above-listed
type definitions (including domains) to InterBase results in
the following SQL definitions:

create table item (
id_item character(4) not null primary key,
description Tdescription not null,
stock Tstock not null,
price Tprice not null);

create table sale (
id_sale character(4) not null primary key,
week Tweek not null,
day Tday not null,
id_item character(4) not null
constraint cst_sale_1item references item (id_item),
number Tnumber not null,
amount Tamount not null);

The type conversion process handles the following three
aspects:

1. The external representation of the type identification
is converted into a standard column with a corre-
sponding representation: either integer or character.
This column has the primary key constraint. If the
type identification representation is integer, Xplain2sql
attempts to create an auto-incrementing primary key
if the target SQL implementation supports it and if
this option has not been disabled by the user.

2. There are several semantic arguments against null
values. Commonly a specializa- tion is the most
appropriate modeling solution. That is why Xplain
does not support these values. According to the
Xplain manual [12], every attribute of a type should
therefore have a value. And as Xplain does not have
the concept of nulls, therefore every column should
be not null. Xplain supports specification of possibly
derived default values, therefore a user does not need
to specify a value for every column in his insert
statements.
In a relational context we can also discover several
arguments against nulls. This helps us, for example,
to avoid unpleasant surprises in where clauses, and to
avoid situations where indexes cannot be defined.

When the UDT is being created, most SQL imple-
mentations allow specification of the default null/not
null option for that type in the create table statement.
For reasons of clarity, Xplain2sql therefore writes
always not null or null in the create table statement.
There are two exceptions: one exception is explained
in section 3.4. The other is when columns contain
binary large object (BLOB) data (memo or graphic
representations). These columns are null by default.
Even when the empty string is assigned to a memo
field, up to one database page is used (2K or even
more). So using null in such cases makes sense.
There is one more exception: a user can force a
nullable attribute, base or type, by putting the
Xplain2sql specific keyword optional in front of it.
This is useful when the datamodel is reverse engi-
neered from a relational model.

3. If an attribute refers to another type, Xplain2sql adds
the foreign key key constraint to that table.

Xplain2sql also recognises the semantic abstraction of
specialization. Consider the specialization in foregoing
semantic model:

type invoiced sale (A4) = [sale], name, street, zipcode,
city.

This is converted to:

create table invoiced sale (
id_invoiced_sale character(4) not null primary key,
id_sale character(4) not null unique
constraint cst_invoiced_sale_1sale

references sale (id_sale),
name Tname not null,
street Tstreet not null,
zip_code Tzip_code not null,
city Tcity not null);

Specializations are converted into 1-to-(0,1) relationships
by means of a foreign key and a unique constraint. So
every sale can occur at most once as invoiced sale. Note
here that Xplain supports multiple inheritance, so using the
parent key as the subtype key will not work.

3.3 Naming conventions

Converting Xplain identifiers (i.e. base names or type
names) into SQL identifiers is not always straightforward.
The first reason is that Xplain supports spaces in
identifiers. The second is that an Xplain identifier might
be a reserved word in the target SQL implementation.
Most SQL implementations support so-called quoted
identifiers, which are part of the ANSI-92 standard.
Identifiers surrounded with double quotes can contain
spaces or can be reserved keywords. The example below
shows the conversion of the type item to PostgreSQL.
This dialect supports quoted identifiers, but it does not
support UDTs.

325-316 402

create table "item" (
"id item" character(4) not null primary key,
"description" character(13) not null,
"stock" int2 not null,
"price" numeric(6,2) not null);

Quoted identifiers do not solve all identifier problems. For
example, UDTs usually cannot be quoted. So column
names can be quoted, but not their data types. For base
name conversion another technique is needed: replace the
spaces in base names by underscores (‘_’) and add an
underscore as suffix or prefix if the resulting identifier is
a keyword in a particular SQL implementation. Microsoft
SQL Server 7.0 supports quoted identifiers, but also
bracketed identifiers: identifiers surrounded with square
brackets. Square brackets seem to be allowed everywhere,
even in column types, so base types can have spaces too
in this implementation.

3.4 Converting init constraints

The init statement is one of the most difficult statements
to convert. ANSI-92 SQL supports something comparable
to init in the form of the keyword default. But only literal
expressions (i.e. numbers or characters) are allowed. As an
example we initialise the number of every sale. This
default can be overridden when a new sale is inserted, but
if no number is specified, the number will be 1:

init default sale its number = 1.

As this is a literal expression, conversion can be done as
follows:

create table sale (
id_sale character(4) not null primary key,
week Tweek not null,
day Tday not null,
id item character(4) not null
constraint cst_sale_1item references item (id_item),
number Tnumber, default 1 not null,
amount Tamount not null);

An init expression that is not a literal is much harder to
support. The target SQL im- plementation should have the
capability to specify a before-insert trigger for the init
default command and an after-insert trigger for the init
command. For implementations not supporting before-
insert triggers, columns with inits must allow null, so it is
allowed not to specify a value. Triggers are usually fired
after constraint checking. So a not null specification
requires a value to be specified, even if an init expression
is specified. In the trigger itself the value of the column
will be replaced if it is an init expression or conditionally
replaced if it is an init default expression. As an example,
consider the following type definitions:

type item (A4) = description, stock, price.
type sale (A4) = week, day, item, number, unit price,

amount.

init sale its unit price = item its price.

The Microsoft Transact SQL code becomes:

create trigger [tr saleInit] on [sale]
for insert

as update[sale]
set

unit price= [item].[price]
from inserted
join [sale] on [sale].[id sale] = inserted.[id sale]
join [item] on [item].[id item] = [sale].[id item]

go

4. CONVERSION OF QUERIES

The Xplain language has several commands to retrieve
and modify data. This section presents conversion for the
retrieval commands get and extend. The data modification
commands insert, update and delete are trivial. Currently,
Xplain2sql does not support the new (recursive) cascade
command.

4.1 Converting get commands

Obviously, the get statement is converted into a select
statement. For example, the Xplain command to list all
items is:

get item.

Converted into (InterBase) SQL this becomes:

select *
from item;

If the its construct occurs, a join is generated; this is a
save conversion. The Xplain command to get all sales,
including item descriptions, is:

get sale its week, day, item its description.

Converted into (InterBase) SQL this becomes:

select sale.id sale, sale.week, sale.day, item.description
from sale
join item on item.id item = sale.id item;

Not every SQL implementation supports the above
ANSI-92 style joins. For implementations that do not
support the new-style join, the old-style join is generated.
PostgreSQL is an example:

select "sale"."id sale", "sale"."week", "sale"."day",
"item"."description"

from "sale", "item"
where ("item"."id item" = "sale"."id item");

4.2 Converting extend commands

The Xplain extend command adds a new temporary
column to a table. This column is used for intermediate
results in complex derivations. No SQL implementation
known by the authors supports temporary columns. Only

325-316 403

some of the implementations support temporary tables,
which are almost as useful. It is possible to create a new,
temporary table with two columns: one contains the
primary key of every column from the table which is
extended; the second contains the contents of the new
column. A join of these two tables has the effect of a table
extended with an additional column. As an example we
determine the turnover per item. In Xplain this is formu-
lated as follows:

extend item with turnover =
total sale its amount
per item.

get item its turnover.

Converted into Microsoft Transact SQL, this becomes:

select
[id item],
(coalesce(

(select sum([sale].[amount])
from [sale]
where
([sale].[id item] = [access type].[id item])

), 0)) as [turnover]
into [#item.turnover]

from [item] access type

select [item].[id item], [turnover]
from [item]

join [#item.turnover] on
[#item.turnover].[id item] = [item].[id item]

The extend command is converted into a select, which
does not output the results, but inserts them in a table
because of the into clause. This table is temporary because
of the ‘#’ sign in front of the table name. The second
select just joins the original table with the temporary table
to output the results. The first select statement uses a
correlated subquery to get the sum of sales for every item.
It is important that the SQL pitfall of missing items can be
avoided [4, 10] by selecting from the item table. Because
of missing sales, certain sums can be null. The nulls are
another pitfall, because a user expects to be able to select
items with no sales with something like ‘turnover = 0’.
Using the IsNull function we insert a 0 instead of a null
if a sum is null. Using this example we can now define
three requirements an SQL implementation has to support
to be able to correctly convert an extend command without
pitfalls:
1. The implementation should have the notion of a

temporary table;
2. The implementation should support subqueries;
3. The implementation should have a function like

coalesce (ANSI-92 standard). This function is also
called IsNull or NVL in some implementations.

The authors only know two two SQL implementations
which fulfil these three requirements: Oracle and

Microsoft SQL Server. For implementations that do not
support the last two requirements, Xplain2sql cannot
provide a conversion. Users have to revert to the tedious
manual conversions. For implementations only lacking the
notation of a temporary table, some alternatives can be
given:
• Use a view instead of a temporary table. However, it

is possible that not every user is authorized to create
views. Therefore this approach probably works only
for static cases, where the possible extends are
preformulated. Views created on the fly by one user
are visible for and usable by others users of the same
database. To avoid naming conflicts, view names have
to be unique to allow on the fly view creation to
work.

• Use a normal table instead of a temporary table.
Normal tables are also subject to the problems listed
above.

• In-line the extend whenever the extend occurs in a
select. The extend command is not translated in this
case, but simply remembered. When the outcome of
an extend is used in a get command, the subquery is
written at that place. Unfortunately, this can lead to
awful and inefficient queries.

5. IMPLEMENTATION ASPECTS

Xplain2sql is an Open Source program written in Eiffel.
Using the SmallEiffel compiler [2], Xplain2sql can be
made available on 22 platforms. Xplain2sql won a silver
award at the Eiffel ’99 Struggle. Xplain2sql is a fine
example of the Builder pattern [5], [6]. The Director
participant is implemented by the tokenizer and parser in
Xplain_scanner and Xplain_parser. The Builder participant
is implemented by the class SQL_GENERATOR. For
expression parsing the Interpreter pattern [5], [6] is used.
More information about the implementation can be found
in the manual [1]. Full source, documentation, samples
and binaries for FreeBSD, BeOS and Microsoft Windows
NT are available at http://www.pobox.com/berend/ xplain).

6. SUPPORTED SQL DIALECTS

Currently Xplain2sql converts Xplain to Microsoft SQL
Server, Inprise Interbase, PostgreSQL, ANSI-92 SQL, and
others. It must be noted here that Xplain generates more
than just create table statements; it also generates insert,
update and delete stored procedures for each table. The
latest version can generate ADO middleware code for
Delphi. Besides the advantage of a language that supports
both aggregation and specialization with ease (unlike
SQL), porting database code comes almost for free.

7. PRACTICAL EXPERIENCES

Xplain modeling has been used throughout NederWare’s
consultancy practice for almost 7 years. But the manual

325-316 404

conversion to SQL proved to be tedious. In 1996 a
precursor of Xplain2sql was used to develop and generate
the database of an administrative program of the Urk Fish
Auction, the largest flatfish auction in Europe [8]. This
database consisted of more than 110 tables. Some smaller
examples where Xplain2sql has been used to design and
generate the database include a book loan and library
management program (Library Gameren), a contact, task
and order program (FunderingsTechniek Noord, Tolbert),
and a money loan program (Reac, Rotterdam). Currently
Xplain2sql is used to (re-)write the core of Ortec’s
computer-aided planning software for (international)
transport. Using Xplain, mapping objects defined in the
OO-modeling stage to a relational database proved to be
quite straightforward. In all these cases the automatic
conversion of Xplain to SQL has proved to be very
time-saving: Xplain is not only more compact, but it is
also less easy to create design faults. We found that when
something could not be expressed in Xplain, the database
design could be improved and this improvement would
also fit in Xplain. A comparative study of students who
designed a relational and semantic database points in the
same direction [11].

CONCLUSION

With Xplain2sql it has become practical to use the Xplain
language in relational environments. Because Xplain is a
concise language that is orthogonal, it is easy to learn. The
fundamental is-a and has-a abstractions have elegant
language definitions. Definition and manipulation in a
database environment therefore become simple activities.
The build-in expert knowledge used in the conversion
from Xplain to SQL brings these advantages to todays
business applications.

REFERENCES

[1] B. de Boer, Xplain2sql manual, URL: http://
www.pobox.com/berend/xplain, version 0.7,
October 1999

[2] D. Colnet and O. Zendra, Optimizations of Eiffel
programs: SmallEiffel, The GNU Eiffel Com-
piler, URL: http://SmallEiffel.loria.fr/papers/
tools-europe-99.pdf, Proc. 29th conference on
Technology of Object-Oriented Languages and
Systems (TOOLS Europe’99), IEEE Computer
Society, (1999), 341-350

[3] C.J. Date, A Critique of the SQL database lan-
guage. ACM SIGMOD Record, 14, 3 (1984), 8-52

[4] C.J. Date, Introduction to database system (7th
edition), Addison-Wesley, Reading Mass. (2000)

[5] Eric Gamma et al., Design Patterns,
Addison-Wesley, Reading Mass. (1995)

[6] Jean-Marc Jézéquel et al., Design Patterns and
Contracts, Addison-Wesley, Reading Mass.
(2000)

[7] B.M. Meyer, Object-oriented software construc-
tion (2nd edition), Prentice-Hall (1997)

[8] N. v.d. Laan, Case Study Visafslag Urk, URL:
http://www.ascbenelux.nl/Projecten/Urk.htm, ASC
Software Technologies (1999)

[9] J.H. ter Bekke, Semantic Data Modeling, Prentice
Hall (1992)

[10] J.H. ter Bekke, Can we rely on SQL?, Proc. 8th
Int. DEXA Workshop ’97, Toulouse France, ed.
R.R. Wagner, IEEE Computer Society (1997),
378-383

[11] J.H. ter Bekke, Comparative study of four data
modeling approaches, Proc. 2nd Int. EMMSAD
workshop, Barcelona, eds K. Siau, Y. Wand and
J. Parsons, B1-B12 (1997).

[12] J.H. ter Bekke, Manual Xplain DBMS, URL:
http://is.twi.tudelft.nl/dbs/xplain/manual.html,
version 5.8, October 1999 (in Dutch)

325-316 405

